Skip to main content
Log in

Catalytic effects of Fe, Al and Si on the formation of NOX precursors and HCl during straw pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The catalytic effects of iron, aluminum or silicon on the formation of NOX precursors (HCN, NH3 and HNCO) and HCl during wheat straw pyrolysis were studied using a thermogravimetric analyzer (TG) coupled with a Fourier transform infrared (FTIR) spectrometer in argon atmosphere. The results show that the presence of iron, aluminum or silicon decreases conversion of straw-N into NH3 with the sequence of Fe > Si > Al. The iron or silicon addition suppresses N-conversion into HCN and HNCO, and the aluminum addition has no notable influence on HCN emission during pyrolysis. The share of N-conversion to NH3 and HCN increases, but that to HNCO and NO decreases a little in the presence of added iron, aluminum or silicon. The addition of SiO2 results in the highest HCl removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ogawa M, Yoshida N. Nitrous oxide emission from the burning of agricultural residue. Atmos Environ. 2005;39:3421–9.

    Article  CAS  Google Scholar 

  2. Purvis MRI, Tadulan EL, Tariq AS. NOx control by air staging in a small biomass fuelled underfeed stoker. Int J Energ Res. 2000;24:917–33.

    Article  CAS  Google Scholar 

  3. Hansson KM, Samuelsson J, Tullin C, Åmand LE. Formation of HNCO, HCN and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame. 2004;137:265–77.

    Article  CAS  Google Scholar 

  4. Tian FJ, Yu JL, Mckenzie LJ, Hayashi J, Li CZ. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energy Fuels. 2007;21:517–21.

    Article  CAS  Google Scholar 

  5. Hansson KM, Åmand LE, Habermann A, Winter F. Pyrolysis of poly-L-leucine under combustion-like conditions. Fuel. 2003;82:653–60.

    Article  CAS  Google Scholar 

  6. Becidan M, Skreiberg Ø, Hustad JE. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues. Energy Fuels. 2007;21:1173–80.

    Article  CAS  Google Scholar 

  7. Li J, Liu YW, Shi JY, Wang ZY, Hu L, Yang X, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR. Thermochim Acta. 2008;467:20–9.

    Article  CAS  Google Scholar 

  8. Li J, Wang ZY, Yang X, Hu L, Liu YW, Wang CX. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J Anal Appl Pyrol. 2007;80:247–53.

    Article  CAS  Google Scholar 

  9. Ren QQ, Zhao CS, Wu X, Liang C, Chen XP, Shen JZ, et al. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. J Anal Appl Pyrol. 2008;85:447–53. doi: 10.1016/j.jaap.2008.08.006.

    Article  Google Scholar 

  10. Tan LL, Li CZ. Formation of NOx and SOX precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOx and SOX precursors from the pyrolysis of a Victorian brown coal. Fuel. 2000;79:1891–7.

    Article  CAS  Google Scholar 

  11. Li CZ, Tan LL. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel. 2000;79:1899–1906.

    Article  CAS  Google Scholar 

  12. Xie ZL, Feng J, Zhao W, Xie KC, Pratt KC, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. Fuel. 2001;80:2131–8.

    Article  CAS  Google Scholar 

  13. Chang LP, Xie ZL, Xie KC, Pratt KC, Hayashi J, Chiba T, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN. Fuel. 2003;82:1159–66.

    Article  CAS  Google Scholar 

  14. Li J, Wang ZY, Yang X, Hu L, Liu YW, Wang CX. Decomposing or subliming? An investigation of thermal behavior of l-leucine. Thermochim Acta. 2006;447:147–53.

    Article  CAS  Google Scholar 

  15. Yu QZ, Brage C, Chen GX, Sjöström K. The fate of fuel-nitrogen during gasification of biomass in a pressurized fluidized bed gasifier. Fuel. 2007;86:611–8.

    Article  CAS  Google Scholar 

  16. Kleemann M, Elsener M, Koebel M, Wokaun A. Hydrolysis of isocyanic acid on SCR catalysts. Ind Eng Chem Res. 2000;39:4120–6.

    Article  CAS  Google Scholar 

  17. Vassilev SV, Eskenazy GM, Vassileva CG. Contents, modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations. Fuel. 2000;79:923–38.

    Article  CAS  Google Scholar 

  18. Zhu HM, Jiang XG, Yan JH, Chi Y, Cen KF. TG-FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrol. 2008;82:1–8.

    Article  CAS  Google Scholar 

  19. Zhang CX, Wang YX, Yang ZH, Xu MH. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis. Fuel. 2006;85:2034–40.

    Article  CAS  Google Scholar 

  20. Partanen J, Backman P, Backman R, Hupa M. Absorption of HCl by limestone in hot flue gases. Part I: The effects of temperature, gas atmosphere and absorbent quality. Fuel. 2005;84:1664–73.

    CAS  Google Scholar 

  21. Soudais Y, Moga L, Blazek J, Florent L. Coupled DTA–TGA–FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. J Anal Appl Pyrol. 2007;78:46–57.

    Article  CAS  Google Scholar 

  22. Wu ZH, Sugimoto Y, Kawashima H. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification. Fuel. 2003;82:2057–64.

    Article  CAS  Google Scholar 

  23. Aboulkas A, Harfi KEl, Nadifiyine M, Bouadili AEl. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim. 2008;91:737–43.

    Article  CAS  Google Scholar 

  24. Zhou LM, Wang YP, Huang QW, Cai JQ. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol. 2006;87:963–9.

    Article  CAS  Google Scholar 

  25. Tonbul Y. Pyrolysis of pistachio shell as a biomass. J Therm Anal Calorim. 2008;91:641–7.

    Article  CAS  Google Scholar 

  26. Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim. 2008;91:779–86.

    Article  CAS  Google Scholar 

  27. Li C, Yamamoto Y, Suzuki M, Hirabayashi D, Suzuki K. Study on the combustion kinetic characteristics of biomass tar under catalysts. J Therm Anal Calorim. 2009;95:991–7.

    Article  CAS  Google Scholar 

  28. Kök MV. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Special Fund of Transformation of Scientific and Technical Achievements in Jiangsu province, China (Project number: BA2007023) and the Foundation for Excellent Doctorial Dissertation of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsui Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Q., Zhao, C., Wu, X. et al. Catalytic effects of Fe, Al and Si on the formation of NOX precursors and HCl during straw pyrolysis. J Therm Anal Calorim 99, 301–306 (2010). https://doi.org/10.1007/s10973-009-0150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0150-0

Keywords

Navigation