Skip to main content
Log in

Thermal decomposition study of antimony (III) tribromide and aromatic amine adducts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid adducts, SbBr3 · L (L = pyridine, 2-, 3- and 4-methylpyridine; abbreviated as Py, 2MPy, 3MPy and 4MPy) were synthesized and characterized by elemental analysis and IR spectroscopy. According to the results coordination of nitrogen of aromatic ring with antimony atom was supposed. Kinetic studies were accomplished by using thermogravimetric data obtained through non-isothermal technique. Determination of activation energy and pre-exponential factor was based on the Coats–Redfern integral Ozawa–Flynn–Wall model-free methods. The kinetics parameters Ea, and log A determined at 5 K min−1 were 150.6 kJ mol−1, 16.0 and 122.0 kJ mol−1, 12.4 for SbBr3 · Py and SbBr3 · 4MPy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liptay G, Kenessey G, Bihatsi L, Wadsen T, Mink J. Pyridin type complexes of transition-metal-halides. J Therm Anal. 1992;38:899–905.

    Article  CAS  Google Scholar 

  2. Liptay G, Kenessey G, Mink J. Pyridine type complexes of transition-metal-halides II: Preparation, characterization and thermal analysis studies of cobalt(II)-bromides and iodides with 2-,3-,4-methylpyridines. Thermochim Acta. 1993;214:71–83.

    Article  CAS  Google Scholar 

  3. Mautner FA, Goher MAS. Synthesis, spectroscopic and crystal structure study of di-μ)1,1)-azido-μ(O,O)-nitrato(O-nitrato)tetrakis(3-picoline) aquadicopper(II) and catena-di-μ(1,3)-azido-[di-μ(1,1)-azido-bis(4-picoline)dicopper(II)][Cu2(N3)2(NO3)2(3-picoline)4(H2O)] and Cu(4-picoline)(N3)2. Polyhedron. 1993;12:2823–9.

    Article  CAS  Google Scholar 

  4. Sultana N, Tabassum H, Arayne MS. Synthesis and characterization of Cu(I) complexes of triphenylphosphine and 2-methylpyridine. Indian J Chem A. 1994;33:63–4.

    Google Scholar 

  5. Mautner FA, Goher MAS. Spectral and X-ray structure determination of two polymeric complexes of copper(II) azide with 3-picoline and 2-bromopyridine: Cu(3-picoline)2(N3)2 and Cu(2-bromopyridine)(N3)2. Polyhedron. 1992;11:2537–42.

    Article  CAS  Google Scholar 

  6. Kiran S, Ravi K, Prem R, Goswami AK. Synthesis and characterization of bis(pentafluorophenyl)antimony(V) cations, [(C6F5)2SbL3]3+. J Fluorine Chem. 2003;122:229–32.

    Article  Google Scholar 

  7. Srinivas N, Kishan MR, Kulkarni SJ, Raghavan KV. Ammoxidation of picolines over modified silicoaluminophosphate molecular sieves. Microporous Mesoporous Mater. 2000;39:125–34.

    Article  CAS  Google Scholar 

  8. Das SC. Evaluation of some organic additives for zinc electrowinning from sulphate solutions. Trans Indian Inst Met. 1999;49:781–8.

    Google Scholar 

  9. Das SC, Singh P, Hefter GT. Effects of 2-picoline on zinc electrowinning from acidic sulfate electrolyte. J Appl Electrochem. 1996;26:1245–52.

    Article  CAS  Google Scholar 

  10. Dunstan PO, Airoldi C. Adducts of arsenic trihalides with heterocyclic amines. J Chem Eng Data. 1988;33:93–8.

    Article  CAS  Google Scholar 

  11. Ptaszynski B. The thermal-decomposition of complex salts of bismuth(III) bromide with hydrobromides of aromatic-amines. Thermochim Acta. 1994;232:137–44.

    Article  CAS  Google Scholar 

  12. Pontes FML, Oliveira SF, Espínola JGP, Fonseca MG, Arakaki LNH. Picoline as ligand with antimony trichloride and triiodide adducts. J Therm Anal Calorim. 2004;75:975–88.

    Article  CAS  Google Scholar 

  13. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881.

    Article  CAS  Google Scholar 

  14. Flynn J, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:232–7.

    Article  Google Scholar 

  15. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

    Google Scholar 

  16. Ribeiro CA, de Souza WR, Crespi MS, Gomes Neto JA. Non-isothermal kinetic of oxidation of tungsten carbide. J Therm Anal Calorim. 2007;90:801–5.

    Article  CAS  Google Scholar 

  17. Logvinenko V. Model-free approach in the study of decomposition kinetics for cluster compounds and coordination compounds. J Therm Anal Calorim. 2008;93:805–9.

    Article  CAS  Google Scholar 

  18. Vadim M, Serge B. Modulated thermogravimetry in analysis of decomposition kinetics. Chem Eng Sci. 2005;60:747–66.

    Article  Google Scholar 

  19. Cotas AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  Google Scholar 

  20. Green JHS, Kynaston W, Paisley HM. Vibrational spectra of monosubstituted pyridines. Spectrochim Acta. 1963;19:549–64.

    Article  CAS  Google Scholar 

  21. Lamba OP, Parihar JS, Jaint YS. Laser-excited Raman and infrared-spectra of alpha-picolines, beta-picolines and gamma-picolines. Indian J Pure Appl Phys. 1983;21:236–42.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to CAPES and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, E.P.S., Botelho, J.R., Oliveira, S.F. et al. Thermal decomposition study of antimony (III) tribromide and aromatic amine adducts. J Therm Anal Calorim 97, 427 (2009). https://doi.org/10.1007/s10973-009-0087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-009-0087-3

Keywords

Navigation