Skip to main content
Log in

Thermal, spectral and AFM studies of calcium silicate hydrate-polymer nanocomposite material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A non-ionic polymer (poly(vinyl alcohol) (PVA)) has been incorporated into the inorganic layers of calcium silicate hydrate (C–S–H) during precipitation of quasicrystalline C–S–H from aqueous solution. C–S–H and a C–S–H-polymer nanocomposite (C–S–HPN) material were synthesized and characterized by X-ray fluorescence (XRF), energy dispersive spectroscopy (EDS), 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR) and 13C cross-polarization nuclear magnetic resonance (13C CP NMR) spectroscopy, atomic force microscopy (AFM), thermal conductivity, thermogravimetric analysis (TG) and differential thermal analysis (DTA). Thermal conductivity of PVA, C–S–H and C–S–HPN material was studied in the temperature range 25–50°C. C–S–HPN materials exhibited the highest thermal conductivity at 25 and 50°C. The thermal conductivity increases from 25 to 50°C are 7.03, 17.46 and 14.85% for PVA, C–S–H and C–S–HPN material, respectively. Three significant decomposition temperature ranges were observed on the TG curve of C–S–HPN material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SC Mojumdar L Raki (2005) J. Therm. Anal. Cal. 82 89 Occurrence Handle1:CAS:528:DC%2BD2MXht1KgsbbP Occurrence Handle10.1007/s10973-005-0846-8

    Article  CAS  Google Scholar 

  2. S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-005-7353-9.

  3. X. Qiu, N. Mathis and K. Schimdt, Thermochim. Acta, in press.

  4. B Chowdhury SC Mojumdar (2005) J. Therm. Anal. Cal. 81 179 Occurrence Handle1:CAS:528:DC%2BD2MXlslOltro%3D Occurrence Handle10.1007/s10973-005-0764-9

    Article  CAS  Google Scholar 

  5. SC Mojumdar (2001) J. Therm. Anal. Cal. 64 1133 Occurrence Handle1:CAS:528:DC%2BD3MXlslKqtbc%3D Occurrence Handle10.1023/A:1011580626499

    Article  CAS  Google Scholar 

  6. B Chowdhury (2004) J. Therm. Anal. Cal. 78 215 Occurrence Handle1:CAS:528:DC%2BD2cXns1OlsLg%3D Occurrence Handle10.1023/B:JTAN.0000042169.37321.24

    Article  CAS  Google Scholar 

  7. L Sun JES Venart RC Prasad (2002) Int. J. Thermophys. 23 357 Occurrence Handle1:CAS:528:DC%2BD38XktFCjur4%3D Occurrence Handle10.1023/A:1015153318137

    Article  CAS  Google Scholar 

  8. F Su RC Prasad (2003) Int. Commun. Heat Mass 30 603 Occurrence Handle10.1016/S0735-1933(03)00098-8

    Article  Google Scholar 

  9. S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., accepted.

  10. I Janotka SC Mojumdar (2005) J. Therm. Anal. Cal. 81 197 Occurrence Handle1:CAS:528:DC%2BD2MXlslOltrk%3D Occurrence Handle10.1007/s10973-005-0767-6

    Article  CAS  Google Scholar 

  11. M Alexandre P Dubois (2000) Mater. Sci. Eng. 28 1 Occurrence Handle10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  12. JE Mark (1996) Polym. Eng. Sci. 36 2905 Occurrence Handle1:CAS:528:DyaK2sXhvFSgsw%3D%3D Occurrence Handle10.1002/pen.10692

    Article  CAS  Google Scholar 

  13. E Reynaud C Gauthier J Perez (1999) Rev. Metall./Cah. Inf. Tech. 96 169 Occurrence Handle1:CAS:528:DyaK1MXivFKlsb0%3D

    CAS  Google Scholar 

  14. T Von Werne TE Patten (1999) J. Am. Chem. Soc. 121 7409 Occurrence Handle1:CAS:528:DyaK1MXksF2nsrY%3D Occurrence Handle10.1021/ja991108l

    Article  CAS  Google Scholar 

  15. N Heron DL Thorn (1998) Adv. Mater. 10 1173 Occurrence Handle10.1002/(SICI)1521-4095(199810)10:15<1173::AID-ADMA1173>3.0.CO;2-6

    Article  Google Scholar 

  16. P Cavert et al. (1997) Potential Application of Nanotubes, in Carbon Nanotubes CRC Press Boca Raton, FL 277

    Google Scholar 

  17. V Favier GR Canova SC Shrivastava JY Cavaille (1997) Polym. Eng. Sci. 37 1732 Occurrence Handle1:CAS:528:DyaK2sXmvFOqt7o%3D Occurrence Handle10.1002/pen.11821

    Article  CAS  Google Scholar 

  18. L Chazeau JY Cavalle G Canova R Dendievel B Boutherin (1999) J. Appl. Polym. Sci. 71 1797 Occurrence Handle1:CAS:528:DyaK1MXnsVWgtw%3D%3D Occurrence Handle10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E

    Article  CAS  Google Scholar 

  19. M Zanetti P Bracco L Costa (2004) Polym. Degrad. Stab. 85 657 Occurrence Handle1:CAS:528:DC%2BD2cXksl2lsrY%3D Occurrence Handle10.1016/j.polymdegradstab.2004.03.005

    Article  CAS  Google Scholar 

  20. H-L Tyan Y-C Liu K-H Wei (1999) Chem. Mater. 11 1942 Occurrence Handle1:CAS:528:DyaK1MXktVWhtLo%3D Occurrence Handle10.1021/cm990187x

    Article  CAS  Google Scholar 

  21. Z Wang TJ Pinnavaia (1998) Chem. Mater. 10 3769 Occurrence Handle1:CAS:528:DyaK1cXntFegsr0%3D Occurrence Handle10.1021/cm980448n

    Article  CAS  Google Scholar 

  22. J Liu Y Gao F Wang W Ming (2000) J. Appl. Polym. Sci. 75 384 Occurrence Handle1:CAS:528:DyaK1MXnvVGis7o%3D Occurrence Handle10.1002/(SICI)1097-4628(20000118)75:3<384::AID-APP7>3.0.CO;2-R

    Article  CAS  Google Scholar 

  23. JW Gilman (1999) Appl. Clay Sci. 15 31 Occurrence Handle1:CAS:528:DyaK1MXkvVersLw%3D Occurrence Handle10.1016/S0169-1317(99)00019-8

    Article  CAS  Google Scholar 

  24. JW Gilman CL Jackson AB Morgan JR Hayyis E Manias EP Giannelis M Wuthenow D Hilton SH Philips (2000) Chem. Mater. 12 1866 Occurrence Handle1:CAS:528:DC%2BD3cXkvVCqt70%3D Occurrence Handle10.1021/cm0001760

    Article  CAS  Google Scholar 

  25. D Porter E Metcalfe MJK Thomas (2000) Fire Mater. 24 45 Occurrence Handle1:CAS:528:DC%2BD3cXivFGntrw%3D Occurrence Handle10.1002/(SICI)1099-1018(200001/02)24:1<45::AID-FAM719>3.0.CO;2-S

    Article  CAS  Google Scholar 

  26. J Wang J Dua J Zhu CA Wilkie (2002) Polym. Degrad. Stab. 77 249 Occurrence Handle1:CAS:528:DC%2BD38Xltlans7g%3D Occurrence Handle10.1016/S0141-3910(02)00055-1

    Article  CAS  Google Scholar 

  27. M Zanetti G Camino D Canavese AB Morgan FJ Lamelas CA Wilkie (2002) Chem. Mater. 14 189 Occurrence Handle1:CAS:528:DC%2BD3MXptV2mtr4%3D Occurrence Handle10.1021/cm011124t

    Article  CAS  Google Scholar 

  28. M Zanetti T Kashiwagi L Falqui G Camino (2002) Chem. Mater. 14 881 Occurrence Handle1:CAS:528:DC%2BD38Xns1Kntw%3D%3D Occurrence Handle10.1021/cm011236k

    Article  CAS  Google Scholar 

  29. J Zhu P Start KA Mauritz CA Wilkie (2002) Polym. Degrad. Stab. 77 253 Occurrence Handle1:CAS:528:DC%2BD38Xltlans7k%3D Occurrence Handle10.1016/S0141-3910(02)00056-3

    Article  CAS  Google Scholar 

  30. J Zhu F Uhl AB Morgan CA Wilkie (2001) Chem. Mater. 13 4649 Occurrence Handle1:CAS:528:DC%2BD3MXnvFamu7c%3D Occurrence Handle10.1021/cm010451y

    Article  CAS  Google Scholar 

  31. JM Yeh SJ Liou CY Lai PC Wu TY Tsai (2001) Chem. Mater. 13 1131 Occurrence Handle1:CAS:528:DC%2BD3MXhsVaks70%3D Occurrence Handle10.1021/cm000938r

    Article  CAS  Google Scholar 

  32. JM Yeh CL Chen YC Chen CY Ma KR Lee Y Wei S Li (2002) Polymer 43 2729 Occurrence Handle1:CAS:528:DC%2BD38XhsV2ktLs%3D Occurrence Handle10.1016/S0032-3861(02)00005-8

    Article  CAS  Google Scholar 

  33. JM Yeh SJ Liou CY Lin CY Cheng YW Chang KR Lee (2002) Chem. Mater. 14 154 Occurrence Handle1:CAS:528:DC%2BD3MXos1Cjt7o%3D Occurrence Handle10.1021/cm010337f

    Article  CAS  Google Scholar 

  34. M Kobayashi I Ando T Ishii S Amiya (1998) J. Mol. Struct. 440 155 Occurrence Handle1:CAS:528:DyaK1cXpvFw%3D Occurrence Handle10.1016/S0022-2860(97)00238-X

    Article  CAS  Google Scholar 

  35. ZH Zanni R Rassem-Bertolo S Masse L Fernandez P Nieto B Bresson (1996) Magnet. Resonan. Imag. 14 827 Occurrence Handle1:CAS:528:DyaK2sXjt1KlsQ%3D%3D Occurrence Handle10.1016/S0730-725X(96)00211-1

    Article  CAS  Google Scholar 

  36. AA Ibrahim HH ElSersy MF Abadir (2004) J. Therm. Anal. Cal. 76 713 Occurrence Handle1:CAS:528:DC%2BD2cXkvFGgtbg%3D Occurrence Handle10.1023/B:JTAN.0000032255.58397.4b

    Article  CAS  Google Scholar 

  37. S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., accepted.

  38. S. C. Mojumdar and L. Raki, Preparation and Properties of Calcium Silicate Hydrate Polymer Nanocomposite, 107th American Ceramics Society Annual Meeting, Exposition and Technology Fair, April 10–13, 2005, Baltimore, MD, USA.

  39. S. C. Mojumdar and L. Raki, Ceram. Trans. (Ceram. Nanomat. Nanotech. IV), in press (2006).

  40. J Dweck PF Ferreira da Silva R Silva Aderne PM Büchler FK Cartledge (2003) J. Therm. Anal. Cal. 71 821 Occurrence Handle1:CAS:528:DC%2BD3sXjvVylur0%3D Occurrence Handle10.1023/A:1023322108940

    Article  CAS  Google Scholar 

  41. SC Mojumdar B Chowdhury KG Varshney K Mazanec (2004) J. Therm. Anal. Cal. 78 135 Occurrence Handle1:CAS:528:DC%2BD2cXns1Olsbo%3D Occurrence Handle10.1023/B:JTAN.0000042161.12490.92

    Article  CAS  Google Scholar 

  42. T Lan PD Kaviratna TJ Pinnavaia (1994) Chem. Mater. 6 573 Occurrence Handle1:CAS:528:DyaK2cXjtVSjsrg%3D Occurrence Handle10.1021/cm00041a002

    Article  CAS  Google Scholar 

  43. I. Odler, 2000, Special Inorganic Cement, Capter 13.3, MDF cement, London, New York: E and F. N. Spon, pp. 1–395.

  44. B Chowdhury (2004) J. Therm. Anal. Cal. 78 215 Occurrence Handle1:CAS:528:DC%2BD2cXns1OlsLg%3D Occurrence Handle10.1023/B:JTAN.0000042169.37321.24

    Article  CAS  Google Scholar 

  45. SC Mojumdar (2005) Res. J. Chem. Environ. 9 23 Occurrence Handle1:CAS:528:DC%2BD2MXht1aju7%2FM

    CAS  Google Scholar 

  46. SC Mojumdar (2001) J. Therm. Anal. Cal. 64 1133 Occurrence Handle1:CAS:528:DC%2BD3MXlslKqtbc%3D Occurrence Handle10.1023/A:1011580626499

    Article  CAS  Google Scholar 

  47. SC Mojumdar (2001) Challeng. Coord. Chem. New Century 5 453 Occurrence Handle1:CAS:528:DC%2BD2cXjsFynsbk%3D

    CAS  Google Scholar 

  48. I Janotka L’ Krajči (2000) Bull. Mater. Sci. 23 521 Occurrence Handle1:CAS:528:DC%2BD3MXkslyjtw%3D%3D Occurrence Handle10.1007/BF02903894

    Article  CAS  Google Scholar 

  49. HFW Taylor et al. (1998) Cement Chemistry, 2nd Edn. Thomas Telford Publ. London, UK

    Google Scholar 

  50. I Janotka L’ Krajči A Ray SC Mojumdar (2003) Cem. Concr. Res. 33 489 Occurrence Handle1:CAS:528:DC%2BD3sXhsFOhtrY%3D Occurrence Handle10.1016/S0008-8846(02)00994-8

    Article  CAS  Google Scholar 

  51. I Janotka SC Mojumdar (2003) Sol. Stat. Phenom. 90–91 309 Occurrence Handle10.4028/www.scientific.net/SSP.90-91.309

    Article  Google Scholar 

  52. I Janotka T Nürnbergerová L Nad (2000) Magaz. Concr. Res. 52 399 Occurrence Handle10.1680/macr.2000.52.6.399

    Article  Google Scholar 

  53. YH Yu CY Lin JM Yeh WH Lin (2003) Polymer 44 3553 Occurrence Handle1:CAS:528:DC%2BD3sXjvVCmtrw%3D Occurrence Handle10.1016/S0032-3861(03)00062-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojumdar S. C..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojumdar, S.C., Raki, L., Mathis, N. et al. Thermal, spectral and AFM studies of calcium silicate hydrate-polymer nanocomposite material. J Therm Anal Calorim 85, 119–124 (2006). https://doi.org/10.1007/s10973-005-7354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7354-8

Keywords

Navigation