Skip to main content
Log in

Coprecipitation of Au clusters and alumina sol in supercritical CO2—the facile way to stabilize gold nanoparticles within oxide matrix

  • Brief Communication: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A novel method for the synthesis of catalytically active composites based on gold clusters incorporated into an alumina matrix was proposed. The method combines sol–gel and supercritical fluid technologies. The composites were synthesized by precipitating of gold clusters and alumina sol mixture in the supercritical antisolvent (SAS) carbon dioxide medium. Gold clusters were synthesized in the colloidal solution of alumina sol in situ (one-pot synthesis) via controlled reduction of AuIII using PPh3 as a stabilizer for the first time. It was shown that this method allows us to stabilize gold clusters with sizes less than 2 nm in the alumina matrix with a developed specific surface area (SBET = 441 m2/g) and a narrow pore size distribution. The obtained composite does not contain stabilizer, which may poison the catalyst. The developed approach makes possible to synthesize catalytically active composites with a certain amount of gold cluster and oxide matrix of different nature.

Highlights

  • The gold based cluster composites were obtained via supercritical antisolvent precipitation.

  • The composites contain gold clusters with sizes less than 2 nm.

  • The composites have a developed specific surface and narrow pore size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408. https://doi.org/10.1246/cl.1987.405

    Article  Google Scholar 

  2. Hutchings GJ (1985) Vapor-phase hydrochlorination of acetylen—correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295

    Article  CAS  Google Scholar 

  3. Artiukha EA, Nuzhdin AL, Bukhtiyarova GA et al. (2015) One-pot reductive amination of aldehydes with nitroarenes over an Au/Al 2 O 3 catalyst in a continuous flow reactor. Catal Sci Technol 5:4741–4745. https://doi.org/10.1039/C5CY00964B

    Article  CAS  Google Scholar 

  4. Nuzhdin AL, Moroz BL, Bukhtiyarova GA et al. (2015) Selective liquid-phase hydrogenation of a nitro group in substituted nitrobenzenes over Au/Al 2 O 3 Catalyst in a packed-bed flow reactor. Chempluschem 80:1741–1749. https://doi.org/10.1002/cplu.201500310

    Article  CAS  Google Scholar 

  5. Ulrich V, Moroz B, Sinev I et al. (2017) Studies on three-way catalysis with supported gold catalysts. Influence of support and water content in feed. Appl Catal B Environ 203:572–581. https://doi.org/10.1016/j.apcatb.2016.10.017

    Article  CAS  Google Scholar 

  6. Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation: Results of research activity at the Boreskov Institute of Catalysis. Catal Today 144:292–305. https://doi.org/10.1016/j.cattod.2008.10.038

    Article  CAS  Google Scholar 

  7. Demidova YS, Ardashov OV, Simakova OA et al. (2014) Isomerization of bicyclic terpene epoxides into allylic alcohols without changing of the initial structure. J Mol Catal A Chem 388–389:162–166. https://doi.org/10.1016/j.molcata.2013.09.016

    Article  CAS  Google Scholar 

  8. Hashmi ASK, Hutchings GJ (2006) Gold Catalysis. Angew Chemie Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454.

  9. Alyabyev SB, Beletskaya IP (2017) Gold as a catalyst. Part I. Nucleophilic addition to the triple bond. Russ Chem Rev 86:689–749. https://doi.org/10.1070/RCR4727

    Article  CAS  Google Scholar 

  10. Takei T, Akita T, Nakamura I et al (2012) Chapter one – Heterogeneous catalysis by gold. Adv Catal 55:1–126. https://doi.org/10.1016/B978-0-12-385516-9.00001-6

    Article  CAS  Google Scholar 

  11. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett 44:83–87. https://doi.org/10.1023/A:1018925008633

    Article  CAS  Google Scholar 

  12. Hudgens JW, Pettibone JM, Senftle TP, Bratton RN (2011) Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters. Inorg Chem 50:10178–10189. https://doi.org/10.1021/ic2018506

  13. Li G, Jin R (2013) Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res 46:1749–1758. https://doi.org/10.1021/ar300213z

    Article  CAS  Google Scholar 

  14. Zhang J, Li Z, Huang J et al. (2017) Size dependence of gold clusters with precise numbers of atoms in aerobic oxidation of D-glucose. Nanoscale 9:16879–16886. https://doi.org/10.1039/C7NR06566C

    Article  CAS  Google Scholar 

  15. Yin H, Ma Z, Chi M, Dai S (2010) Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4. Catal Lett 136:209–221. https://doi.org/10.1007/s10562-010-0316-1

    Article  CAS  Google Scholar 

  16. Türk M, Erkey C (2017) Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: Current state, further perspectives and needs. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2017.12.010

  17. Chatterjee M, Ikushima Y, Hakuta Y, Kawanami H (2006) In situ synthesis of gold nanoparticles inside the pores of MCM-48 in supercritical carbon dioxide and its catalytic application. Adv Synth Catal 348:1580–1590. https://doi.org/10.1002/adsc.200606137

    Article  CAS  Google Scholar 

  18. Wong B, Yoda S, Howdle SM (2007) The preparation of gold nanoparticle composites using supercritical carbon dioxide. J Supercrit Fluids 42:282–287. https://doi.org/10.1016/j.supflu.2007.03.005

    Article  CAS  Google Scholar 

  19. Wang JS, Wai CM, Brown GJ, Apt SD (2016) Two-dimensional nanoparticle cluster formation in supercritical fluid CO2. Langmuir 32:4635–4642. https://doi.org/10.1021/acs.langmuir.6b01011

    Article  CAS  Google Scholar 

  20. Lu T, Blackburn S, Dickinson C et al. (2009) Production of titania nanoparticles by a green process route. Powder Technol 188:264–271. https://doi.org/10.1016/j.powtec.2008.05.006

    Article  CAS  Google Scholar 

  21. Nesterov NS, Pakharukova VP, Martyanov ON (2017) Water as a cosolvent—effective tool to avoid phase separation in bimetallic Ni-Cu catalysts obtained via supercritical antisolvent approach. J Supercrit Fluids 130:133–139. https://doi.org/10.1016/j.supflu.2017.08.002

    Article  CAS  Google Scholar 

  22. Hutchings GJ, Lopez-Sanchez JA, Bartley JK et al. (2002) Amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO2 as an antisolvent. J Catal 208:197–210. https://doi.org/10.1006/jcat.2002.3555

    Article  CAS  Google Scholar 

  23. Kondrat SA, Davies TE, Zu Z et al. (2011) The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. J Catal 281:279–289. https://doi.org/10.1016/j.jcat.2011.05.012

    Article  CAS  Google Scholar 

  24. Marin RP, Kondrat SA, Pinnell RK et al. (2013) Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Appl Catal B Environ 140–141:671–679. https://doi.org/10.1016/j.apcatb.2013.04.076

    Article  CAS  Google Scholar 

  25. Marin RP, Kondrat SA, Davies TE et al. (2014) Novel cobalt zinc oxide Fischer–Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catal Sci Technol 4:1970–1978. https://doi.org/10.1039/c4cy00044g

    Article  CAS  Google Scholar 

  26. Smith PJ, Kondrat SA, Carter JH et al. (2017) Supercritical Antisolvent Precipitation of Amorphous Copper-Zinc Georgeite and Acetate Precursors for the Preparation of Ambient-Pressure Water-Gas-Shift Copper/Zinc Oxide Catalysts. Chem Cat Chem 9:1621–1631. https://doi.org/10.1002/cctc.201601603

    Article  CAS  Google Scholar 

  27. Kondrat SA, Smith PJ, Wells PP et al. (2016) Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531:83–87. https://doi.org/10.1038/nature16935

    Article  CAS  Google Scholar 

  28. Nesterov NS, Paharukova VP, Yakovlev VA, Martyanov ON (2016) The facile synthesis of Ni-Cu catalysts stabilized in SiO2 framework via a supercritical antisolvent approach. J Supercrit Fluids 112:119–127. https://doi.org/10.1016/j.supflu.2016.03.003

    Article  CAS  Google Scholar 

  29. Schmid G, Pfeil R, Boese R et al. (1981) Au55[P(C6H5)3]12CI6—ein Goldcluster ungewöhnlicher Größe. Chem Ber 114:3634–3642. https://doi.org/10.1002/cber.19811141116

    Article  CAS  Google Scholar 

  30. Nesterov NS, Shalygin AS, Pakharukova VP et al. (2019) Mesoporous aerogel-like Al-Si oxides obtained via supercritical antisolvent precipitation of alumina and silica sols. J Supercrit Fluids 149:110–119. https://doi.org/10.1016/J.SUPFLU.2019.03.014

    Article  CAS  Google Scholar 

  31. Lin J, Li W, Liu C et al. (2015) One-phase controlled synthesis of Au 25 nanospheres and nanorods from 1.3 nm Au: PPh 3 nanoparticles: the ligand effects. Nanoscale 7:13663–13670. https://doi.org/10.1039/C5NR02638E

    Article  CAS  Google Scholar 

  32. Thommes M, Kaneko K, Neimark AV, et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. https://doi.org/10.1515/pac-2014-1117

Download references

Acknowledgements

The work was performed with the support of Russian Foundation for Basic Research (project no 18-33-00659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nesterov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, N.S., Shalygin, A.S., Pakharukova, V.P. et al. Coprecipitation of Au clusters and alumina sol in supercritical CO2—the facile way to stabilize gold nanoparticles within oxide matrix. J Sol-Gel Sci Technol 92, 523–528 (2019). https://doi.org/10.1007/s10971-019-05137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05137-6

Keywords

Navigation