Skip to main content
Log in

Supercapacitor performance of MnO2/NiCo2O4@N-MWCNT hybrid nanocomposite electrodes

  • Original Paper: Sol–gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

MnO2/NiCo2O4@N-MWCNT hybrid nanocomposite was synthesized by the hydrothermal route using ammonia and urea as catalysts. The structural, morphological and compositional properties of the hybrid composites were analyzed using XRD, SEM, HR-TEM SEM-EDAX, XPS, FTIR, and Raman measurements. The electrochemical properties of the prepared hybrid composite were studied by cyclic voltammetry analysis. The outcome of the electrochemical studies revealed a specific capacitance of ~543 Fg−1 at 0.5 A g−1 current density in the KOH (6 M) electrolyte, with a stability of ~88% up to 5000 cycles. The obtained results clearly demonstrated the significance of the nanostructured MnO2/NiCo2O4@N-MWCNT hybrid composite in supercapacitor applications.

Hydrothermal prepared well-defined nanocrystalline MnO2@NiCo2O4/N-doped multiwalled carbon nanotubes (N-MWCNTs) composite was successfully employed in supercapacitor application.

Highlights

  • Controlled synthesis of MnO2@NiCo2O4/N-MWCNT hybrid composite by hydrothermal process is reported.

  • MnO2@NiCo2O4/N-MWCNT hybrid composite showed specific capacitance ~543 Fg−1 at 0.5 A.g−1.

  • Nanocrystalline morphology of the composite material enhanced the electrochemical properties.

  • The hybrid composite shows the excellent capacitance retention ~88% up to 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang L, Zheng Y, Chen S, Ye Y, Xu F, Tan H, Li Z, Hou H, Song Y (2014) Three-dimensional kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors. Electrochimica Acta 135:380–387

    Article  Google Scholar 

  2. Sathishkumar K, Shanmugam N, Kannadasan N, Cholan S, Viruthagiri G (2015) Synthesis and characterization of Cu2 + doped NiO electrode for supercapacitor application. Journal of Sol-Gel Science and Technology 74:621–630

    Article  Google Scholar 

  3. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews 40(3):1697–1721. https://doi.org/10.1039/C0CS00127A

    Article  Google Scholar 

  4. Ramesh S, Kathalingam A, Karuppasamy K, Kim H-S, Kim HS (2019) Nanostructured CuO/Co2O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors. Composites Part B: Engineering 166:74–85. https://doi.org/10.1016/j.compositesb.2018.11.116

    Article  Google Scholar 

  5. Fang L, Xie Y, Wang Y, Zhang Z, Liu P, Cheng N, Liu J, Tu Y, Zhao H, Zhang J (2019) Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Applied Surface Science 464:479–487. https://doi.org/10.1016/j.apsusc.2018.09.124

    Article  Google Scholar 

  6. Ramesh S, Haldorai Y, Kim HS, Kim J-H (2017) A nanocrystalline Co3O4@polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Advances 7(58):36833–36843

    Article  Google Scholar 

  7. Deng S, Sun D, Wu C, Wang H, Liu J, Sun Y, Yan H (2013) Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochimica Acta 111:707–712

    Article  Google Scholar 

  8. Ko TH, Radhakrishnan S, Choi W-K, Seo M-K, Kim B-S (2016) Core/shell-like NiCo2O4-decorated MWCNT hybrids prepared by a dry synthesis technique and its supercapacitor applications. Materials Letters 166:105–109

    Article  Google Scholar 

  9. Yang D, Qiu W, Xu J, Wang P, Jin D, Peng X, Hong B, Jin H, Ge H, Wang X (2016) Facilely Synthesized NiCo2O4/CNTs Nanocomposites for Surpercapacitors with Enhanced Performance. International Journal of Electrochemical Science 11(8):7262–7268

    Article  Google Scholar 

  10. Wu Y-Z, Ding Y, Hayat T, Alsaedi A, Dai S-Y (2018) Enlarged working potential window for MnO2 supercapacitors with neutral aqueous electrolytes. Applied Surface Science 459:430–437. https://doi.org/10.1016/j.apsusc.2018.07.147

    Article  Google Scholar 

  11. Ramesh S, Karuppasamy K, Msolli S, Kim H-S, Kim HS, Kim J-H (2017) A nanocrystalline structured NiO/MnO2@ nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry 41(24):15517–15527

    Article  Google Scholar 

  12. Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications 49(2):137–139. https://doi.org/10.1039/C2CC37117K

    Article  Google Scholar 

  13. Yun YS, Park HH, Jin H-J (2012) Pseudocapacitive effects of N-doped carbon nanotube electrodes in supercapacitors. Materials 5(7):1258–1266

    Article  Google Scholar 

  14. Zhang J, Zhang X, Zhou Y, Guo S, Wang K, Liang Z, Xu Q (2014) Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 2(6):1525–1533

    Article  Google Scholar 

  15. Sevilla M, Yu L, Zhao L, Ania CO, Titiricic M-M (2014) Surface modification of CNTs with N-doped carbon: an effective way of enhancing their performance in supercapacitors. ACS Sustainable Chemistry & Engineering 2(4):1049–1055

    Article  Google Scholar 

  16. Gueon D, Moon JH (2015) Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: emulsion-assisted compact packing and capacitance enhancement. ACS applied materials & interfaces 7(36):20083–20089

    Article  Google Scholar 

  17. Sachin Kumar B, Dhanasekhar C, Venimadhav A, Kalpathy SK, Anandhan S (2018) Pyrolysis-controlled synthesis and magnetic properties of sol–gel electrospun nickel cobaltite nanostructures. Journal of Sol-Gel Science and Technology 86:664–674

    Article  Google Scholar 

  18. Garg N, Basu M, Ganguli AK (2014) Nickel cobaltite nanostructures with enhanced supercapacitance activity. The Journal of Physical Chemistry C 118(31):17332–17341

    Article  Google Scholar 

  19. Zou R, Xu K, Wang T, He G, Liu Q, Liu X, Zhang Z, Hu J (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. Journal of Materials Chemistry A 1(30):8560–8566

    Article  Google Scholar 

  20. Zhang Y, Ma M, Yang J, Su H, Huang W, Dong X (2014) Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale 6(8):4303–4308

    Article  Google Scholar 

  21. Bao F, Zhang Z, Guo W, Liu X (2015) Facile synthesis of three dimensional NiCo2O4@ MnO2 core–shell nanosheet arrays and its supercapacitive performance. Electrochimica Acta 157:31–40

    Article  Google Scholar 

  22. Lai F, Miao Y-E, Huang Y, Chung T-S, Liu T (2015) Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. The Journal of Physical Chemistry C 119(24):13442–13450. https://doi.org/10.1021/acs.jpcc.5b02739

    Article  Google Scholar 

  23. Jia L, Shi Y, Zhang Q, Xu X (2018) Green synthesis of ultrafine methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping. Applied Surface Science 462:923–931. https://doi.org/10.1016/j.apsusc.2018.08.213

    Article  Google Scholar 

  24. Teng F, Santhanagopalan S, Meng DD (2010) Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions. Solid State Sciences 12(9):1677–1682

    Article  Google Scholar 

  25. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology 61(13):1899–1912

    Article  Google Scholar 

  26. Lee C-W, Yoon S-B, Bak S-M, Han J, Roh KC, Kim K-B (2014) Soft templated mesoporous manganese oxide/carbon nanotube composites via interfacial surfactant assembly. Journal of Materials Chemistry A 2(10):3641–3647

    Article  Google Scholar 

  27. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. The Journal of Physical Chemistry C 118(40):22865–22872

    Article  Google Scholar 

  28. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide- MnO2 nanocomposites for supercapacitors. ACS nano 4(5):2822–2830

    Article  Google Scholar 

  29. Sawangphruk M, Srimuk P, Chiochan P, Krittayavathananon A, Luanwuthi S, Limtrakul J (2013) High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60:109–116

    Article  Google Scholar 

  30. Jayaseelan SS, Radhakrishnan S, Saravanakumar B, Seo M-K, Khil M-S, Kim H-Y, Kim B-S (2018) Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 538:451–459

    Article  Google Scholar 

  31. Deng D, Kim B-S, Gopiraman M, Kim IS (2015) Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Advances 5(99):81492–81498

    Article  Google Scholar 

  32. Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. Journal of Materials Chemistry A 2(13):4795–4802

    Article  Google Scholar 

  33. Zhang Z, Bao F, Zhang Y, Feng L, Ji Y, Zhang H, Sun Q, Feng S, Zhao X, Liu X (2015) Formation of hierarchical CoMoO4@MnO2 core–shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. Journal of Power Sources 296:162–168

    Article  Google Scholar 

  34. Ko T-H, Devarayan K, Seo M-K, Kim H-Y, Kim B-S (2016) Facile synthesis of core/shell-like NiCo2O4-decorated MWCNTs and its excellent electrocatalytic activity for methanol oxidation. Scientific Reports 6:20313. https://doi.org/10.1038/srep20313

    Article  Google Scholar 

  35. Wang J-G, Yang Y, Huang Z-H, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  Google Scholar 

  36. Garakani MA, Abouali S, Xu Z-L, Huang J, Huang J-Q, Kim J-K (2017) Heterogeneous, mesoporous NiCo2O4–MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. Journal of Materials Chemistry A 5(7):3547–3557. https://doi.org/10.1039/C6TA08929A

    Article  Google Scholar 

  37. Huang L, Chen D, Ding Y, Wang ZL, Zeng Z, Liu M (2013) Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Applied Materials & Interfaces 5(21):11159–11162. https://doi.org/10.1021/am403367u

    Article  Google Scholar 

  38. Kong D, Ren W, Cheng C, Wang Y, Huang Z, Yang HY (2015) Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Applied Materials & Interfaces 7(38):21334–21346. https://doi.org/10.1021/acsami.5b05908

    Article  Google Scholar 

  39. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society 132(21):7472–7477. https://doi.org/10.1021/ja102267j

    Article  Google Scholar 

  40. Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Scientific Reports 3:1470. https://doi.org/10.1038/srep01470

    Article  Google Scholar 

  41. Wang H, Gao Q, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small (Weinheim an der Bergstrasse, Germany) 7(17):2454–2459. https://doi.org/10.1002/smll.201100534

    Google Scholar 

  42. Shen P, Zhang H, Zhang S, Fei L (2018) Fabrication of completely interface-engineered Ni(OH)2/rGO nanoarchitectures for high-performance asymmetric supercapacitors. Applied Surface Science 460:65–73. https://doi.org/10.1016/j.apsusc.2017.09.145

    Article  Google Scholar 

  43. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Letters 9(3):1002–1006. https://doi.org/10.1021/nl803081j

    Article  Google Scholar 

  44. Ramesh S, Kim HS, Haldorai Y, Han Y-K, Kim J-H (2017) Fabrication of nanostructured MnO2/carbon nanotube composite from 3D precursor complex for high-performance supercapacitor. Materials Letters 196:132–136. https://doi.org/10.1016/j.matlet.2017.03.044

    Article  Google Scholar 

  45. Ramesh S, Haldorai Y, Sivasamy A, Kim HS (2017) Nanostructured Co3O4/nitrogen doped carbon nanotube composites for high-performance supercapacitors. Materials Letters 206:39–43. https://doi.org/10.1016/j.matlet.2017.06.110

    Article  Google Scholar 

  46. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Advanced Functional Materials 24(7):934–942. https://doi.org/10.1002/adfm.201301747

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1A09000823).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Kathalingam or Hyun-Seok Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathalingam, A., Ramesh, S., Sivasamy, A. et al. Supercapacitor performance of MnO2/NiCo2O4@N-MWCNT hybrid nanocomposite electrodes. J Sol-Gel Sci Technol 91, 154–164 (2019). https://doi.org/10.1007/s10971-019-05032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05032-0

Keywords

Navigation