Skip to main content
Log in

Ammonium citrate-assisted combustion synthesis and photoluminescence properties of Dy:YAG nanophosphors

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dy3+-doped yttrium aluminum garnet (YAG) nanocrystalline powders were synthesized by employing a sol–gel combustion process, in which triammonium citrate was used as both fuel reagent and dispersant. The influence of citrate-to-nitrate molar ratio (0–2) on slurry rheology, phase formation, composition, morphology, and particle size distribution of the Dy:YAG powders was evaluated systematically. The effects of Dy3+ dopant concentration (various from 1 to 3 at.%) and annealing temperature (1000–1300 °C) on the structural and optical properties of Dy:YAG phosphors were also investigated, and the chromaticity coordinates of the phosphor were calculated. Results show that pure Dy:YAG nanopowders were produced by calcining the combustion synthesis products with a citrate–nitrate ratio of 1 at or above 850 °C. Study of the luminescence behavior of the synthesized powders reveals that the phosphors exhibit greenish-blue emission pre-annealing and red emission post-annealing. Furthermore, emission band intensity is increased with an increase in both the Dy3+ dopant concentration and annealing temperature. The Dy:YAG phosphor’s temperature-dependent variation between greenish-blue and red luminescence emission makes it attractive as a potential candidate for applications in temperature monitoring of fuel sprays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blumenthal WR, Phillips DS (1996) High-temperature deformation of single-crystal yttrium-aluminum garnet (YAG). J Am Ceram Soc 79:1047–1052

    Article  Google Scholar 

  2. Klimczaka M, Malinowski M, Sarnecki J (2009) Luminescence properties in the visible of Dy:YAG/YAG planar waveguides. J Lumin 129:1869–1873

    Article  Google Scholar 

  3. Karato S, Wang Z, Fujino K (1994) High-temperature creep of yttrium-aluminium garnet single crystals. J Mater Sci 29:6458–6462

    Article  Google Scholar 

  4. Niu XJ, Xun JY, Zhang Y (2015) The spectroscopic properties of Dy3+and Eu3+ co-doped Y3Al5O12 (YAG) phosphors for white LED. Prog Nat Sci Mater Int 25:209–214

    Article  Google Scholar 

  5. Boruc Z, Fetlinski B, Malinowski M (2012) Optical transitions intensities of Dy3+:Y4Al2O9 crystals. Opt Mater 34:2002–2007

    Article  Google Scholar 

  6. Chen DY, Jordan EH, Renfro MW, Gellz M (2009) Dy:YAG phosphor coating using the solution precursor plasma spray process. J Am Ceram Soc 92(1):268–271

    Article  Google Scholar 

  7. Chong JY, Zhang YL, Wagner BK, Kang ZT (2013) Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties. J Alloys Compd 581:484–487

    Article  Google Scholar 

  8. Rabasovic MS, Sevic D, Krizan J, Rabasovic MD, Savic-Sevic S et al (2015) Structural properties and luminescence kinetics of white nanophosphor YAG:Dy. Opt Mater 50:250–255

    Article  Google Scholar 

  9. Liu B, Kong L, Shi C (2007) White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. J Lumin 123:121–122

    Article  Google Scholar 

  10. Kuang J, Liu Y, Zhang J (2006) White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3. J Solid State Chem 179:266

    Article  Google Scholar 

  11. Lee SH, Kochawattana S, Messing GL, Dumm JQ, Quarles G, Castillo V (2006) Solid-state reactive sintering of transparent polycrystalline Nd:YA ceramics. J Am Ceram Soc 89:1945–1950

    Article  Google Scholar 

  12. Ikesue A, Furusato I, Kamata K (1995) Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method. J Am Ceram Soc 78:225–228

    Article  Google Scholar 

  13. Inoue M, Otsu H, Kominami H, Inui T (1991) Synthesis of yttrium aluminum garnet by the glycothermal method. J Am Ceram Soc 74:1452–1454

    Article  Google Scholar 

  14. Li X, Liu H, Wang JY, Cui HM, Han F et al (2004) Rapid synthesis of YAG nano-sized powders by a novel method. Mater Lett 58:2377–2380

    Article  Google Scholar 

  15. Takamori T, David LD (1986) Controlled nucleation for hydrothermal growth of yttrium aluminum garnet powders. J Am Ceram Soc Bull 65:1282–1286

    Google Scholar 

  16. Hakuta Y, Haganuma T, Sue K, Adschiri T, Arai K (2003) Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater Res Bull 38:1257–1265

    Article  Google Scholar 

  17. Chen XT, Lu TC, Wei N, Lu ZW, Chen LJ et al (2015) Systematic optimization of ball milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders. J Alloys Compd 653:552–560

    Article  Google Scholar 

  18. Li J, Chen F, Liu WB, Zhang WX, Wang L et al (2012) Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics. J Eur Ceram Soc 32:2971–2979

    Article  Google Scholar 

  19. Vrolijk JWGA, Willens JWMM, Metselaar R (1990) Coprecipitation of yttrium and aluminum hydroxide for preparation of yttrium aluminum garnet. J Eur Ceram Soc 6:47–53

    Article  Google Scholar 

  20. Yang L, Lu TC, Xu H, Zhang W, Ma BY (2010) A study on the effect factors of sol–gel synthesis of yttrium aluminum garnet nanopowders. J Appl Phys 107:064903–064908

    Article  Google Scholar 

  21. Roy S, Wang LW, Sigmund W, Aldinger F (1999) Synthesis of YAG phase by a citrate–nitrate combustion technique. Mater Lett 39:138–141

    Article  Google Scholar 

  22. Wang ZJ, Zhou GH, Qin XP, Yang Y, Zhang GJ et al (2013) Fabrication of LaGdZr2O7 transparent ceramic. J Eur Ceram Soc 33:643–646

    Article  Google Scholar 

  23. Zou XQ, Zhou GH, Yi HL, Zhang GJ, Wang SW (2011) Fabrication of transparent Y2Zr2O7 ceramics from combustion-synthesized powders. J Am Ceram Soc 94(4):1002–1004

    Article  Google Scholar 

  24. Costa AL, Esposito L, Medri V, Bellosi A (2007) Synthesis of Nd:YAG material by citrate–nitrate sol–gel combustion route. Adv Eng Mater 4:307–312

    Article  Google Scholar 

  25. Luther EP, Yanez JA, Franks GV, Lange FE, Pearson DS (1995) Effect of ammonium citrate on the rheology and particle packing of alumina slurries. J Am Ceram Soc 78:1495–1500

    Article  Google Scholar 

  26. Dhara S, Bhargava P (2005) Influence of nature and amount of dispersant on rheology of aged aqueous alumina gelcasting slurries. J Am Ceram Soc 88:547–552

    Article  Google Scholar 

  27. Johnson DW, Vogel EM (1981) Dispersants for a ceramic slurry. U.S. Patent 4, 267, 065, 1981

  28. Johnson DW, Vogel EM (1981) Process of slurring and spray drying ceramic oxides with polyethyleneimine dispersants. U.S. Patent 4, 301, 020, 1981

  29. Luther EI, Yanez JA, Franks GV, Lange FE, Pearson DS (1995) Effect of ammonium citrate on the rheology and particle packing of alumina slurries. J Am Ceram Soc 78(6):1495–500

    Article  Google Scholar 

  30. Wang J, Zhang J, Luo DW, Yang H, Tang DY, Kong LB (2015) Densification and microstructural evolution of yttria transparent ceramics: the effect of ball milling conditions. J Eur Ceram Soc 35:1011–1019

    Article  Google Scholar 

  31. Li J, Pan YB, Qiu FG, Wu YS, Guo Jk (2008) Nanostructured Nd:YAG powders via gel combustion: the influence of citrate-to-nitrate ratio. Ceram Int 34:141–149

    Article  Google Scholar 

  32. Lu QM, Dong WS, Wang HJ, Wang XK (2002) A novel way to synthesize yttrium aluminum garnet from metal-inorganic precursor. J Am Ceram Soc 85:490–492

    Article  Google Scholar 

  33. Wei LQ, Ye SF, Tian YJ, Xie YS, Chen YF (2009) Effects of ammonium citrate additive on crystal morphology of aluminum phosphate ammonium taranakite. J Cryst Growth 311:3359–3363

    Article  Google Scholar 

  34. Jayasimhadri M, Ratnam BV, Jang KW, Lee HS et al (2010) Greenish-yellow emission from Dy3+-Doped Y2O3 nanophosphors. J Am Ceram Soc 93(2):494–499

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of the People’s Republic of China (Grant No. 51002098),the National High Technology Research and Development Program (863) (2014AA8044061B),Science and Technology Project in Shantou (Grant No. 2014SS019) and Key Laboratory of Neutron Physics, CAEP (Grant No. 2014BC01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiecheng Lu or Yiquan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lu, T., Wu, Y. et al. Ammonium citrate-assisted combustion synthesis and photoluminescence properties of Dy:YAG nanophosphors. J Sol-Gel Sci Technol 79, 606–615 (2016). https://doi.org/10.1007/s10971-016-4040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4040-1

Keywords

Navigation