Skip to main content
Log in

Size-controlled electrical properties of sol–gel-grown nanostructured Gd0.95Ca0.05MnO3

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this communication, we report the results of the studies on electrical properties of cost-effective modified sol–gel-grown nanostructured Gd0.95Ca0.05MnO3 (GCMO) manganites sintered at different temperatures. Structural investigations, carried out using X-ray diffraction measurements, reveal the single-phasic nature of GCMO samples having orthorhombic unit cell structure. Frequency-dependent variation in AC conductivity (σ AC) has been discussed on the basis of correlated barrier hopping (CBH) mechanism for the GCMO samples sintered at lower temperatures. Sintering temperature-induced transition from CBH mechanism to Maxwell–Wagner relaxation processes has been discussed in detail. Size-induced modifications in the impedance response of the samples have been understood, in detail, using size effects and Cole–Cole plots.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arima T, Goto T, Yamasaki Y, Miyasaka S, Ishii K, Tsubota M, Inami T, Murakami Y, Tokura Y (2005) Phys Rev B 72:100102 (4 pp)

    Article  Google Scholar 

  2. Kadomtseva AM, Popov YF, Vorob’ev GP, Ivanov VY, Mukhin AA, Balbashov AM (2005) JETP Lett 81:590–593

    Article  Google Scholar 

  3. Hemberger J, Schrettle F, Pimenov A, Lunkenheimer P, Ivanov VY, Mukhin AA, Balbashov AM, Loidl A (2007) Phys Rev B 75:035118 (8 pp)

    Article  Google Scholar 

  4. Yamasaki Y, Miyasaka S, Goto T, Sagayama H, Arima T, Tokura Y (2007) Phys Rev B 76:184418 (7 pp)

    Article  Google Scholar 

  5. Ferreira WS, Agostinho Moreira J, Almeida A, Chaves MR, Araújo JP, Oliveira JB, Machado da Silva JM, Sa MA, Mendonca TM, Simeao Carvalho P, Kreisel J, Ribeiro JL, Vieira LG, Tavares PB, Mendonca S (2009) Phys Rev B 79:054303 (10 pp)

    Article  Google Scholar 

  6. Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T, Mais J (2005) J Solid State Chem 178:629–637

    Article  Google Scholar 

  7. Agostinho Moreira J, Almeida A, Ferreira WS, Chaves MR, Oliveira JB, Machado da Silva JM, Sa MA, Vilela SMF, Tavares PB (2011) Solid State Commun 151:368–371

    Article  Google Scholar 

  8. Oliveira J, Agostinho Moreira J, Almeida A, Chaves MR, Machado da Silva JM, Oliveira JB, Saabd MA, Tavares PB, Ranjith R, Prellier W (2011) Phys Rev B 84:094414 (12 pp)

    Article  Google Scholar 

  9. Noda N, Nakamura S, Nagayama J, Kuwahara H (2005) J Appl Phys 97:10C103 (3 pp)

    Article  Google Scholar 

  10. Pena O, Bahout M, Ghanimi K, Duran P, Gutierrez D, Moure C (2002) J Mater Chem 12:2480–2485

    Article  Google Scholar 

  11. Baier J, Meier D, Berggold K, Hemberger J, Balbashov A, Mydosh JA, Lorenz T (2006) Phys Rev B 73:100402 (4 pp)

    Article  Google Scholar 

  12. Oliveira J, Agostinho Moreira J, Almeida A, Rodrigues VH, Costa MMR, Tavares PB, Bouvier P, Guennou M, Kreisel J (2012) Phys Rev B 85:052101 (5 pp)

    Article  Google Scholar 

  13. Wang Y, Xu G, Ren Z, Wei X, Weng W, Du P, Shen G, Han G (2007) J Am Ceram Soc 90:2615–2617

    Article  Google Scholar 

  14. AlievAli E (2008) Supercond Sci Technol 21:115022 (9 pp)

    Article  Google Scholar 

  15. Joshi Z, Dhruv D, Kansara S, Vagadia M, Barot N, Mehta PK, Solanki PS, Kuberkar DG, Shah NA (2014) AIP Conf Proc 1591:1306–1308

    Article  Google Scholar 

  16. Solanki PS, Doshi RR, Thaker CM, Swati P, Ganesan V, Kuberkar DG (2009) J Nanosci Nanotechnol 9:5681 (6 pp)

    Article  Google Scholar 

  17. Hasiang HI, Lin KY, Yen FS, Hwang CY (2001) J Mater Sci 36:3809–3815

    Article  Google Scholar 

  18. Marques LGA, Cavalcante LS, Simoes AZ, Pontes FM, Santos-Junior LS, Santos MRMC, Rosa ILV, Varela JA, Longo E (2005) Mater Chem Phys 105:293–297

    Article  Google Scholar 

  19. Fujii I, Ugorek M, Trolier-McKinstry S (2010) J Appl Phys 107:104116 (6 pp)

    Article  Google Scholar 

  20. Tang XG, Chan HLW (2005) J Appl Phys 97:034109 (6 pp)

    Article  Google Scholar 

  21. Kansara SB, Dhruv D, Joshi Z, Pandya DD, Rayaprol S, Solanki PS, Kuberkar DG, Shah NA (2015) Appl Surf Sci 356:1272–1281

    Article  Google Scholar 

  22. Shah NA, Solanki PS, Ravalia A, Kuberkar DG (2015) Appl Nanosci 5:135–141

    Article  Google Scholar 

  23. Kuberkar DG, Doshi RR, Solanki PS, Khachar U, Vagadia M, Ravalia A, Ganesan V (2012) Appl Sur Sci 258:9041–9046

    Article  Google Scholar 

  24. Vagadia M, Ravalia A, Khachar U, Solanki PS, Doshi RR, Rayaprol S, Kuberkar DG (2011) Mater Res Bull 46:1933–1937

    Article  Google Scholar 

  25. Jonscher AK (1977) Nature 267:673–679

    Article  Google Scholar 

  26. Elliott SR (1987) Adv Phys 36:135–217

    Article  Google Scholar 

  27. Elliott SR (1977) Philos Mag B 36:1291–1304

    Article  Google Scholar 

  28. Elliott SR (1978) Philos Mag B 37:553–560

    Article  Google Scholar 

  29. Seeger A, Lunkenheimer P, Hemberger J, Mukhin AA, Ivanov VY, Baldashov AM, Loidl A (1999) J Phys Condens Matter 11:3273–3290

    Article  Google Scholar 

  30. Mangalaraja RV, Ananthakumar S, Manohar P, Gnanam FD (2002) J Magn Magn Mater 253:56–64

    Article  Google Scholar 

  31. Kumar S, Batoo KM, Prakash R, Choi HK, Koo BH, Song JI, Chung H, Jeong H, Lee CG (2010) J Cent South Univ Technol 17:1133–1138

    Article  Google Scholar 

  32. Abram EJ, Sinclair DC, West AR (2003) J Electroceram 10:165–177

    Article  Google Scholar 

  33. Slankamenac M, Ivetic T, Nikolic MV, Ivetic N, Zivanov M, Pavlovic VB (2010) J Electron Mater 39:447–455

    Article  Google Scholar 

  34. Martinez R, Kumar A, Palai R, Scott JF, Katiyar RS (2011) J Phys D Appl Phys 44:105302 (8 pp)

    Article  Google Scholar 

  35. Morrison FD, Jung DJ, Scott JF (2007) J Appl Phys 101:094112 (5 pp)

    Article  Google Scholar 

  36. Thirumal E, Prabhu D, Chattopadhyay K, Ravichandran V (2010) J Alloys Compd 502:169–175

    Article  Google Scholar 

  37. West AR, Sinclair DC, Hirose N (1997) J Electroceram 1:65–71

    Article  Google Scholar 

Download references

Acknowledgments

Author ZJ is thankful to Department of Physics, Saurashtra University, Rajkot, and UGC, New Delhi, for financial support in the form of UGC (BSR) Meritorious Fellowship [File No.: F.25-1/2013-14(BSR)/7-156/2007(BSR)]. Author KG is thankful to Inter-University Accelerator Centre, New Delhi, for financial assistance in the form of junior research fellowship (File No.: BTR 57309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakrar, K., Dhruv, D., Rathod, K.N. et al. Size-controlled electrical properties of sol–gel-grown nanostructured Gd0.95Ca0.05MnO3 . J Sol-Gel Sci Technol 79, 144–150 (2016). https://doi.org/10.1007/s10971-016-4031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4031-2

Keywords

Navigation