Skip to main content
Log in

A magnetic mesoporous SiO2/Fe3O4 hollow microsphere with a novel network-like composite shell: synthesis and application on laccase immobilization

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The magnetic mesoporous SiO2/Fe3O4 hollow microspheres, which have a unique network-like shell constructed with magnetic Fe3O4 nanorods and mesoporous SiO2, were successfully prepared by the co-condensation of tetraethoxysilane in the presence of cetyltrimethylammonium bromide and 1,3,5-triisopropylbenzene. The composite microspheres were utilized as supports for laccase immobilization. The composite microsphere has high surface area (772 m2 g−1) and large pore volume (0.83 cm3 g−1). The obtained microspheres exhibit relatively high saturated magnetization (13.6 emu g−1). The composite mesoporous microspheres used to immobilize laccase as support have a notable laccase immobilization (689 mg g−1) for per gram pure mesoporous SiO2 in the composite microspheres, which is much larger than those reported in the literature. The activity of immobilized laccase has good pH stability and thermal stability. It is further demonstrated that the immobilized laccase exhibited a good catalytic performance when they were used to react with the 2,4-dichlorophenol solution. The degradation rate and removal rate of the 2,4-dichlorophenol is 52.31 and 81.64 %, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang S, Fan Y, Cheng Z et al (2009) Magnetic mesoporous silica spheres for drug targeting and controlled release. J Phys Chem C 113(5):1775–1784

    Article  Google Scholar 

  2. Liong M, Angelos S, Choi E et al (2009) Mesostructured multifunctional nanoparticles for imaging and drug deliver. J Mater Chem 19(35):6251–6257

    Article  Google Scholar 

  3. Ursachi I, Vasile A, Chiriac H et al (2011) Magnetic properties of magnetite nanoparticles coated with mesoporous silica by sonochemical method. Mater Res Bull 46(12):2468–2473

    Article  Google Scholar 

  4. Kim DK, Dobson J (2009) Nanomedicine for targeted drug delivery. J Mater Chem 19(35):6294–6307

    Article  Google Scholar 

  5. Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed 48(5):872–897

    Article  Google Scholar 

  6. Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  Google Scholar 

  7. Li X, Zhang J, Gu H (2011) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27(10):6099–6106

    Article  Google Scholar 

  8. Park HS, Kim CW, Lee HJ et al (2010) A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology 21(22):225101

    Article  Google Scholar 

  9. Slowing II, Trewyn BG, Lin VSY (2007) Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J Am Chem Soc 129(28):8845–8849

    Article  Google Scholar 

  10. Chen B, Pogue BW, Hasan T (2005) Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2(3):477–487

    Article  Google Scholar 

  11. Sen T, Sebastianelli A, Bruce IJ (2006) Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J Am Chem Soc 128(22):7130–7131

    Article  Google Scholar 

  12. Hao R, Xing RJ, Xu ZC et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742

    Article  Google Scholar 

  13. Lee HS, Chang JH (2008) Highly ordered mesoporous silica nanoparticles and their application to DNA separation. In: Proceedings of SPIE 7270, Biomedical Applications of Micro- and Nanoengineering IV and complex systems, 72701B (December 30, 2008)

  14. Ma ZY, Liu XQ, Guan YP et al (2006) Synthesis of magnetic silica nanospheres with metal ligands and application in affinity separation of proteins. Colloids Surf A 275(1):87–91

    Article  Google Scholar 

  15. Santra S, Tapec R, Theodoropoulou N et al (2001) Synthesis and Characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906

    Article  Google Scholar 

  16. Li Z, Tan B, Allix M et al (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4(2):231–239

    Article  Google Scholar 

  17. Xu LC, Dai JD, Pan JM et al (2011) Performance of rattle-type megnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chem Eng J 174(1):221–230

    Article  Google Scholar 

  18. Pinho SLC, Pereira GA, Voisin P et al (2010) Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 4(9):5339–5349

    Article  Google Scholar 

  19. Deng YH, Qi DW, Deng CH et al (2007) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29

    Article  Google Scholar 

  20. Sen T, Sebastianelli A (2006) Meso-structured superparamagnetic nanospheres and nanotubes: smart materials for bioseparations. J Am Chem Soc 128:7130–7131

    Article  Google Scholar 

  21. Zhao W, Gu J, Zhang L et al (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core mesoporous silica shell structure. J Am Chem Soc 127(25):8916–8917

    Article  Google Scholar 

  22. Zhao W, Chen H, Li Y et al (2008) Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carriers and their sustained-release property. Adv Funct Mater 18(18):2780–2788

    Article  Google Scholar 

  23. Zhang L, Qiao SZ, Jin YG et al (2008) Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control. Adv Mater 20(4):805–809

    Article  Google Scholar 

  24. Zhu Y, Kochrick E, Ikoma T et al (2009) An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chem Mater 21(12):2547–2553

    Article  Google Scholar 

  25. Liu J, Qiao SZ, Budi Hartono S et al (2010) Inside cover: monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed 49(29):4840

    Article  Google Scholar 

  26. Deng Y, Deng C, Qi D et al (2009) Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv Mater 21(13):1377–1382

    Article  Google Scholar 

  27. Li QY, Wang RN, Nie ZR et al (2010) Preparation of three-dimensional flower-like Ni(OH)2 nanostructures by a facile template-free solution process. J Alloys Compd 496(1):300–305

    Article  Google Scholar 

  28. Nooney RI, Thirunavukkarasu D, Chen Y et al (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14(11):4721–4728

    Article  Google Scholar 

  29. Chen SL, Dong P, Yang GH (1997) The size dependence of growth rate of monodisperse silica particles from tetraalkoxysilane. J Colloid Interface Sci 189(2):268–272

    Article  Google Scholar 

  30. Li QY, Chen YF, Zeng DD et al (2005) Photocatalytic characterization of silica coated titania nanoparticles with tunable coatings. J Nanopart Res 7(2–3):295–299

    Article  Google Scholar 

  31. Li QY, Zhu QQ, Wei Q et al (2014) Pore controllable regulation and laccase immobilization of hollow mesoporous SiO2/Fe3O4 microspheres. Adv Mater Res 833:93–98

    Article  Google Scholar 

  32. Liu Y, Zeng Z, Zeng G et al (2012) Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol 115:21–26

    Article  Google Scholar 

  33. Wang F, Guo C, Yang L et al (2010) Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour Technol 101(23):8931–8935

    Article  Google Scholar 

  34. Salis A, Pisano M, Monduzzi M et al (2009) Laccase from pleurotus sajor-caju on Functionalised SBA-15 mesoporous silica: immobilisation and use for the oxidation of phenolic compounds. J Mol Catal B Enzym 58(1):175–180

    Article  Google Scholar 

  35. Zhu Y, Kaskel S, Shi J et al (2007) Immobilization of trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem Mater 19(26):6408–6413

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of National Science Foundation of China (Grant No. 51402007), and the Scientific Plan Program of Beijing Municipal Education Commission (KM201210005012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun-Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QY., Wang, PY., Zhou, YL. et al. A magnetic mesoporous SiO2/Fe3O4 hollow microsphere with a novel network-like composite shell: synthesis and application on laccase immobilization. J Sol-Gel Sci Technol 78, 523–530 (2016). https://doi.org/10.1007/s10971-016-3967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3967-6

Keywords

Navigation