Skip to main content
Log in

Silica-decorated mesoporous TiO2 continuous fibers: preparation, structures and properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SiO2-decorated mesoporous TiO2 continuous fibers were prepared by one-pot polyorganometal method. The structures and some properties of the fibers were studied and characterized by XRD, FTIR, SEM, DRS and so on. The results show that the Ti–O–Si chemical bond was formed, which led to higher thermal stability and suppressed the growth of anatase. The fiber, heat-treated under steam atmosphere at 600 °C/2 h, has the specific surface area value of 228.7 m2 g−1 for Si/Ti = 0.3 (mol ratio), which displays the highest photoactivity of all samples. The degradation rate of methyl orange aqueous solution was 99.5 and 94.5 % after 60 min under UV irradiation and after 3 h under solar irradiation, respectively. Furthermore, it was worthwhile to mention that the degradation efficiency was also more than 90 % after six cycles.

Graphical Abstract

The TiO2/SiO2 fibers, composed of nanoparticles about 20–50 nm and Ti–O–Si chemical bond, with high surface area and photocatalytic activity were successfully large-scale-fabricated by a sol–gel method, which have great potential applications such as catalysis, separations and absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dutoit DCM, Schneider M, Baiker A (1995) Titania–silica mixed oxides: I. influence of sol–gel and drying conditions on structural properties. J Catal 153:165–176

    Article  Google Scholar 

  2. Dutoit DCM, Göbel U, Schneider M, Baiker A (1996) Titania–silica mixed oxides: V. effect of sol–gel and drying conditions on surface properties. J Catal 164:433–439

    Article  Google Scholar 

  3. Davis RJ, Liu Z (1997) Titania–silica: A model binary oxide catalyst system. Chem Mater 9:2311–2324

    Article  Google Scholar 

  4. Kang TS, Smith AP, Taylor BE, Durstock MF (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Lett 9:601–606

    Article  Google Scholar 

  5. Kobayashi S, Hanabusa K, Suzuki M, Kimura M, Shirai H (1999) Preparation of TiO2 fiber in a sol–gel system containing organogelator. Chem Lett 28:1077–1078

    Article  Google Scholar 

  6. Guo CW, Cao Y, Dai WL, Fan KN, Deng JF (2002) Fabrication of high surface area fibrous TiO2 with well-defined mesostructures via a nonsurfactant approach. Chem Lett 31:588–589

    Article  Google Scholar 

  7. Puma GL, Puddu V, Tsang HK, Gora A, Toepfer B (2010) Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: photon absorption, quantum yields and rate constants independent of photon absorption. Appl Catal B 99:388–397

    Article  Google Scholar 

  8. Gao B, Chen GZ, Puma GL (2009) Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B 89:503–509

    Article  Google Scholar 

  9. Yin S, Sato T (2000) Synthesis and photocatalytic properties of fibrous titania prepared from protonic layered tetratitanate precursor in supercritical alcohols. Ind Eng Chem Res 39:4526–4530

    Article  Google Scholar 

  10. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4:592–597

    Article  Google Scholar 

  11. Mohapatra SK, Misra M, Mahajan VK, Raja KSJ (2007) Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2–xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C 111:8677–8685

    Article  Google Scholar 

  12. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  Google Scholar 

  13. Kamiya K, Yokoo T, Tanimoto K (1987) Titania fiber, method for producing the fiber and method for using the fiber. JP patent no. 62223323

  14. Chen YF, Lee CY, Yeng MY, Chiu HT (2003) Preparing titanium oxide with various morphologies. Mater Chem Phys 81:39–44

    Article  Google Scholar 

  15. Tekmen C, Suslu A, Cocen U (2008) Titania nanofibers prepared by electrospinning. Mater Lett 62:4470–4472

    Article  Google Scholar 

  16. Zhu LY, Yu G, Wang XQ, Xu D (2009) Preparation and characterization of TiO2 fiber with a facile polyorganotitanium precursor method. J Colloid Interface Sci 336:438–442

    Article  Google Scholar 

  17. Dutt SM, Frost RL, Bell JM (1998) Fourier transform raman spectroscopy of gels derived from modified tetra(-n-butoxy)zirconium (IV). AIP Conf Proc 430:674–677

    Article  Google Scholar 

  18. Shibata H, Ohkubo T, Kohno H, Rangsunvigit P, Sakai H, Abe M (2006) Preparation and photocatalytic activity of titania particulate film with mesostructured silica as binder. J Photochem Photobiol A 181:357–362

    Article  Google Scholar 

  19. Ishikawa T, Yamaoka H, Harada Y, Fujii T, Nagasawa T (2002) A general process for in situ formation of functional surface layers on ceramics. Nature 416:64–67

    Article  Google Scholar 

  20. Liu ZF, Tabora J, Davis RJ (1994) Relationships between microstructure and surface acidity of Ti–Si mixed oxide catalysts. J Catal 149:117–126

    Article  Google Scholar 

  21. Gao XT, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254

    Article  Google Scholar 

  22. Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, Furic K (1997) microstructural properties of TiO2 synthesized by sol–gel procedure. Mater Sci Eng B 47:33–40

    Article  Google Scholar 

  23. Schraml-Marth M, Walther KL, Wokaum A, Handy BE, Baiker A (1992) Porous silica gels and TiO2/SiO2 mixed oxides prepared via the sol–gel process: characterization by spectroscopic techniques. J Non-Cryst Solids 143:93–111

    Article  Google Scholar 

  24. Krishna KR, Bell AT (1991) An isotopic tracer study of the deactivation of Ru/TiO2 catalysts during Fischer–Tropsch synthesis. J Catal 130:597–610

    Article  Google Scholar 

  25. Zhang MH, Shi LY, Yuan S, Zhao Y, Fang JH (2009) Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. J Colloid Interface Sci 330:113–118

    Article  Google Scholar 

  26. Li ZJ, Hou B, Xu Y, Wu D, Sun YH (2005) Hydrothermal synthesis, characterization, and photocatalytic performance of silica–modified titanium dioxide nanoparticles. J Colloid Interface Sci 288:149–154

    Article  Google Scholar 

  27. Zhang HM, Quan X, Chen S, Zhao HM (2006) Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ Sci Technol 40:6104–6109

    Article  Google Scholar 

  28. Liu XM, Lu GQ, Yan ZF (2004) Synthesis and stabilization of nanocrystalline zirconia with MSU mesostructure. J Phys Chem B 108:15523–15528

    Article  Google Scholar 

  29. Kriesel JW, Sander MS, Tilley TD (2001) Block copolymer-assisted synthesis of mesoporous, multicomponent oxides by nonhydrolytic, thermolytic decomposition of molecular precursors in nonpolar media. Chem Mater 13:3554–3563

    Article  Google Scholar 

  30. Yu G, Zhu LY, Wang XQ, Liu JR, Xu D (2010) Fabrication of silica-supported ZrO2 mesoporous fibers with high thermal stability by sol–gel method through a controlled hydrolysis–condensation process. Microporous Mesoporous Mater 130:189–196

    Article  Google Scholar 

  31. Oveisi H, Suzuki N, Beitollahi A, Yamauchi Y (2010) Aerosol-assisted fabrication of mesoporous titania spheres with crystallized anatase structures and investigation of their photocatalytic properties. J Sol-Gel Sci Technol 56:212–218

    Article  Google Scholar 

  32. Oveisi H, Rahighi S, Jiang XF, Nemoto Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2010) Unusual antibacterial property of mesoporous titania films: drastic improvement by controlling surface area and crystallinity. Chem-An Asian J 5:1978–1983

    Article  Google Scholar 

  33. Oveisi H, Rahighi S, Jiang XF, Agawa Y, Beitollahi A, Wakatsuki S, Yamauchi Y (2011) Improved inactivation effect of bacteria: fabrication of mesoporous anatase films with fine Ag nanoparticles prepared by coaxial vacuum Arc deposition. Chem Lett 40:420–422

    Article  Google Scholar 

  34. Kimura T, Yamauchi Y, Miyamoto N (2011) Highly photoactive porous anatase films obtained by deformation of 3D mesostructures. Chem-An Eur J 17:4005–4011

    Article  Google Scholar 

  35. Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41–54

    Article  Google Scholar 

  36. Wang P, Huang BB, Zhang XY, Qin XY, Dai Y, Jin H, Wei JY, Whangbo MH (2008) Composite semiconductor H2WO4·H2O/AgCl as an efficient and stable photocatalyst under visible light. Chem-An Eur J 14:10543–10546

    Article  Google Scholar 

  37. Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48:1914–1920

    Article  Google Scholar 

  38. Zeng J, Wang H, Zhang YC, Zhu MK, Yan H (2007) Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes. J Phys Chem C 111:11879–11887

    Article  Google Scholar 

  39. Raj GR, Hiroaki O, Ryohei T (2008) Shogo, A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution. J Environ Sci 20:1138–1145

    Article  Google Scholar 

  40. Braconnier B, Páez CA, Lambert S, Alié C, Henrist C, Poelman D, Pirard JP, Cloots R, Heinrichs B (2009) Ag- and SiO2-doped porous TiO2 with enhanced thermal stability. Microporous Mesoporous Mater 122:247–254

    Article  Google Scholar 

  41. Yuan RS, Fu XZ, Liu P, Wang XX (2006) Influence of solvents on morphology of TiO2 fibers prepared by template synthesis. Scr Mater 55:1003–1006

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundations (Grant Nos. 51472144, 51372140 and 51102155), the Research Fund for the Doctoral Program of Higher Education (RFDP, 20110131120018), the Youth Scientist Fund of Shandong Province (BS2011CL025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W.W., Zhu, L.Y. Silica-decorated mesoporous TiO2 continuous fibers: preparation, structures and properties. J Sol-Gel Sci Technol 77, 727–737 (2016). https://doi.org/10.1007/s10971-015-3906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3906-y

Keywords

Navigation