Skip to main content
Log in

Organogels from different self-assembling novel l-proline dihydrazide derivatives: gelation mechanism and morphology investigations

  • Original Paper: sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new set of organogelator, l-proline dihydrazide derivatives (designated as Cbz-Pro-AkHz) were synthesized, purified and characterized based on different spectral techniques, such as NMR, FTIR and HPLC–MS analyses. The gelation properties were investigated in oils and various organic solvents. The gel–sol temperature (T GS) was decided by the function of gelator concentration, and the corresponding enthalpies (ΔH g) were extracted. FT-IR spectroscopy studies revealed that the main driving force for the formation of aggregated structure was the hydrogen bonding and van der Waals interaction. Thus, all the xerogels obtained were analyzed using SEM and powder XRD, which revealed different supramolecular network structures in different gels. Possible models have been inferred from XRD for the different molecular packing arrangements within the fibrillar gel networks of the organogels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Basak S, Nanda J, Banerjee A (2012) J Mater Chem 22:11658–11664

    Article  Google Scholar 

  2. Wu Y, Bai B, Zhang C, Zhang Y, Wang H, Wei Z, Li M (2015) Tetrahedron 71:37–43

    Article  Google Scholar 

  3. Das D, Kar T, Das PK (2012) Soft Matter 8:2348–2365

    Article  Google Scholar 

  4. Minakuchi N, Hoe K, Yamaki D, Ten-No S, Nakashima K, Goto M, Mizuhata M, Maruyama T (2012) Langmuir 28:9259–9266

    Article  Google Scholar 

  5. Grigoriew H, Temeriusz A, Chmielewska D, Gronkowski J, Mirkowska M (2007) J Sol–Gel Sci Technol 44:249–254

    Article  Google Scholar 

  6. Velázquez DG, Orive AG, Creus AH, Luque R, Ravelo ÁG (2011) Org Biomol Chem 9:6524–6527

    Article  Google Scholar 

  7. Wang H, Yang (2012) Z Soft Matter 8: 2344–2347

  8. Sravan B, Kamalakar K, Karuna MSL, Palanisamy A (2014) J Sol–Gel Sci Technol 71:372–379

    Article  Google Scholar 

  9. Hideaki T, Masahiro S, Shuji S (2006) Colloids Surf A 273:70–74

    Article  Google Scholar 

  10. Kim JH, Seo M, Kim YJ, Kim SY (2009) Langmuir 25:1761–1766

    Article  Google Scholar 

  11. Sahoo P, Chakraborty I, Dastidar P (2012) Soft Matter 8:2595–2598

    Article  Google Scholar 

  12. Hughes M, Frederix PWJM, Raeburn J, Birchall LS, Sadownik J, Coomer FC, Lin I-H, Cussen EJ, Hunt NT, Tuttle T, Webb SJ, Adams DJ, Ulijn RV (2012) Soft Matter 8:5595–5602

    Article  Google Scholar 

  13. Svobodová H, Noponen V, Kolehmainen E, Sievänen E (2012) RSC Adv 2:4985–5007

    Article  Google Scholar 

  14. Houton KA, Morris KL, Chen L, Schmidtmann M, Jones JTA, Serpell LC, Lloyd GO, Adams DJ (2012) Langmuir 28:9797–9806

    Article  Google Scholar 

  15. Marangoni AG (2012) J Am Oil Chem Soc 89:749–780

    Article  Google Scholar 

  16. Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836

    Article  Google Scholar 

  17. Raghavan SR, Douglas JF (2012) Soft Matter 8:8539–8546

    Article  Google Scholar 

  18. Duan PF, Li YG, Jiang J, Wang TY, Liu MH (2011) Sci China Chem 54:1051–1063

    Article  Google Scholar 

  19. Shimizu T, Masuda M, Minamikawa H (2005) Chem Rev 105:1401–1443

    Article  Google Scholar 

  20. Hirst AR, Smith DK, Feiters MC, Geurts HP, Wright AC (2003) J Am Chem Soc 125:9010–9011

    Article  Google Scholar 

  21. Suzuki M, Hanabusa K (2009) Chem Soc Rev 38:967–975

    Article  Google Scholar 

  22. Suzuki M, Sato T, Shirai H, Hanabusa K (2006) New J Chem 30:1184–1191

    Article  Google Scholar 

  23. Escuder B (2005) Martı´S, Miravet JF. Langmuir 21:6776–6787

    Article  Google Scholar 

  24. Wang K, Jia Q, Han F, Liu H, Li S (2010) Drug Dev Ind Pharm 36:1511–1521

    Article  Google Scholar 

  25. Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF (2012) Chem Eur J 18:4063–4072

    Article  Google Scholar 

  26. Wang K, Jia Q, Han F, Liu H, Li S (2010) Drug Dev Ind Pharm 36:1511–1521

    Article  Google Scholar 

  27. Motulskya A, Lafleurb M, Couffin-Hoaraua A-C, Hoarauc D, Bouryd F, Benoitd J-P, Lerouxa J-C (2005) Biomaterials 26:6242–6253

    Article  Google Scholar 

  28. Edwards W, Lagadec CA, Smith DK (2011) Soft Matter 7:110–117

    Article  Google Scholar 

  29. Hardy JG, Hirst AR, Smith DK (2012) Soft Matter 8:3399–3406

    Article  Google Scholar 

  30. Carré A, Grel PL, Baudy-Floćh M (2001) Tetrahedron Lett 42:1887–1889

    Article  Google Scholar 

  31. Suzuki M, Saito H, Shirai H, Hanabusa K (2007) New J Chem 31:1654–1660

    Article  Google Scholar 

  32. Suzuki M, Sato T, Shirai H, Hanabusa K (2007) New J Chem 31:69–74

    Article  Google Scholar 

  33. Suzuki M, Nanbu M, Yumoto M, Shirai H, Hanabusa K (2005) New J Chem 29:1439–1444

    Article  Google Scholar 

  34. Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648

    Article  Google Scholar 

  35. Jang W-D, Aida T (2003) Macromolecules 36:8461–8469

    Article  Google Scholar 

  36. Tan C, Su L, Lu R, Xue P, Bao C, Liu X, Zhao Y (2006) J Mol Liq 124:32–36

    Article  Google Scholar 

  37. Jang W-D, Jiang D-L, Aida T (2000) J Am Chem Soc 122:3232–3233

    Article  Google Scholar 

  38. Terech P, Pasquier D, Bordas V, Rossat C (2000) Langmuir 16:4485–4494

    Article  Google Scholar 

  39. Ramakanth I, Patnaik A (2012) J Phys Chem B 116:2722–2729

    Article  Google Scholar 

  40. Xu H, Song J, Tian T, Feng R (2012) Soft Matter 8:3478–3486

    Article  Google Scholar 

  41. Mallia VA, Terech P, Weiss RG (2011) J Phys Chem B 115:12401–12414

    Article  Google Scholar 

  42. Chen Z, Stepanenko V, Dehm V, Prins P, Siebbeles LDA, Seibt J, Marquetand P, Engel V, Würthner F (2007) Chem A Eur J 13:436–449

    Article  Google Scholar 

Download references

Acknowledgments

This research work is funded by the National Natural Science Foundation of China (Nos. 30772670 and 21477082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchun Zhai or Chuansheng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, S., Jia, L. et al. Organogels from different self-assembling novel l-proline dihydrazide derivatives: gelation mechanism and morphology investigations. J Sol-Gel Sci Technol 78, 218–227 (2016). https://doi.org/10.1007/s10971-015-3903-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3903-1

Keywords

Navigation