Skip to main content
Log in

Non-covalent construction of non-Pt counter electrodes for high performance dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Non-covalent bonds (π–π stacking, electrostatic forces and van der Waals interactions) have been constructed between multi-walled carbon nanotubes (MWCNTs) and poly(diallyldimethylammonium chloride) (PDDA). The non-Pt based counter electrodes (CEs) for the dye-sensitized solar cells (DSSCs) have been fabricated by spin-coating the aqueous dispersions of PDDA/MWCNTs on the Fluorine-doped SnO2 (FTO) substrates. Due to the presence of the linker PDDA, the MWCNTs show enhanced dispersibility and long-termed stability in aqueous solution which improves the cohesiveness on the FTO. The optimum dosage of PDDA for a stable dispersion is found at the mass percentage of ~15.0 % (PDDA/MWCNTs), and the zeta potential of the final composite PDDA/MWCNTs is about 27.0 mV as measured in neutral water solution (pH = 6.8). The prepared PDDA/MWCNTs CEs exhibit low charge-transfer resistance (Rct = 4.6 Ω cm−2) and high electrocatalytic efficiency, which was confirmed by the electrochemical impedance spectroscopy and cyclic voltammetry. The photoelectric conversion efficiency (η) of the DSSCs fabricated with PDDA/MWCNTs is 5.66 %, which is greater than that (η = 4.48 %) of the pristine MWCNTs. This data is comparable to that of the conventional platinum coated CEs (η = 6.73 %).

Graphical Abstract

Non-covalent bonds have been constructed between multi-walled carbon nanotubes and poly(diallyldimethylammonium chloride), and a type of non-Pt based counter electrodes for high performance dye-sensitized solar cells were fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grätzel M (2001) Nature 414(6861):338

    Article  Google Scholar 

  2. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Graetzel M (2011) Science 334(6056):629

    Article  Google Scholar 

  3. Hauch A, Georg A (2001) Electrochim Acta 46(22):3457

    Article  Google Scholar 

  4. Papageorgiou N (2004) Coord Chem Rev 248(13–14):1421

    Article  Google Scholar 

  5. Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Pechy P, Graetzel M (2006) J Electrochem Soc 153(12):A2255

    Article  Google Scholar 

  6. Yan J, Uddin MJ, Dickens TJ, Okoli OI (2013) Sol Energy 96:239

    Article  Google Scholar 

  7. Ma J, Zhou L, Li C, Yang J, Meng T, Zhou H, Yang M, Yu F, Chen J (2014) J Power Sources 247:999

    Article  Google Scholar 

  8. Qiang Z, Jinwen Q, Meihua Z, Quanfu A (2009) J Mater Chem 19(46):8732

    Article  Google Scholar 

  9. Ma R, Sasaki T, Bando Y (2004) J Am Chem Soc 126(33):10382

    Article  Google Scholar 

  10. Kim KK, Yoon SM, Choi JY, Lee J, Kim BK, Kim JM, Lee JH, Paik U, Park MH, Yang CW, An KH, Chung Y, Lee YH (2007) Adv Funct Mater 17(11):1775

    Article  Google Scholar 

  11. Munkhbayar B, Nine MJ, Jeoun J, Bat-Erdene M, Chung H, Jeong H (2013) Powder Technol 234:132

    Article  Google Scholar 

  12. Yang DQ, Rochette JF, Sacher E (2005) J. Phys. Chem. B 109(10):4481

    Article  Google Scholar 

  13. Ndiaye A, Bonnet P, Pauly A, Dubois M, Brunet J, Varenne C, Guerin K, Lauron B (2013) J Phys Chem C 117(39):20217

    Article  Google Scholar 

  14. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Compos A 41(10):1345

    Article  Google Scholar 

  15. Ntim SA, Sae-Khow O, Witzmann FA, Mitra S (2011) J Colloid Interface Sci 355(2):383

    Article  Google Scholar 

  16. Hussain CM, Saridara C, Mitra S (2011) RSC Adv 1(4):685

    Article  Google Scholar 

  17. Tunckol M, Fantini S, Malbosc F, Durand J, Serp P (2013) Carbon 57:209

    Article  Google Scholar 

  18. Munkhbayar B, Hwang S, Kim J, Bae K, Ji M, Chung H, Jeong H (2012) Electrochim Acta 80:100

    Article  Google Scholar 

  19. Murakami TN, Graetzel M (2008) Inorg Chim Acta 361(3):572

    Article  Google Scholar 

  20. Akhtar MS, Li ZY, Park DM, Oh DW, Kwak D-H, Yang OB (2011) Electrochim Acta 56(27):9973

    Article  Google Scholar 

  21. Byrne MT, Gun’ko YK (2010) Adv Mater 22(15):1672

    Article  Google Scholar 

  22. Yanyan W, Xinsheng W, Baoyan W, Zixia Z, Feng Y, Sha L, Xia Q, Qiang C (2008) Sens Actuators B Chem 130(2):809

    Article  Google Scholar 

  23. Rouse JH, Lillehei PT (2003) Nano Lett 3(1):59

    Article  Google Scholar 

  24. Wang S, Yu D, Dai L (2011) J Am Chem Soc 133(14):5182

    Article  Google Scholar 

  25. Kim B, Sigmund WM (2003) Langmuir 19(11):4848

    Article  Google Scholar 

  26. Niu HH, Liu L, Wang HP, Zhang SW, Ma Q, Mao XL, Wan L, Miao SD, Xu JZ (2012) Electrochim Acta 81:246

    Article  Google Scholar 

  27. de la Cruz EF, Zheng Y, Torres E, Li W, Song W, Burugapalli K (2012) Int J Electrochem Sci 7(4):3577

    Google Scholar 

  28. Gallardo A, Grandner S, Almarza NG, Klapp SHL (2012) J Chem Phys 137(1):014702

    Article  Google Scholar 

  29. Shi L, Liang RP, Qiu JD (2012) J Mater Chem 22(33):17196

    Article  Google Scholar 

  30. Byoung-Jin K, Seong-Geun O, Moon-Gyu H, Seung-Soon I (2000) Langmuir 16(14):5841

    Article  Google Scholar 

  31. Zhang J, Kong L-B, Wang B, Luo Y-C, Kang L (2009) Synth Met 159(3–4):260

    Article  Google Scholar 

  32. Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X-Z (2011) ACS Nano 5(5):3795

    Article  Google Scholar 

  33. Furukawa Y, Ueda F, Hyodo Y, Harada I, Nakajima T, Kawagoe T (1988) Macromolecules 21(5):1297

    Article  Google Scholar 

  34. Cho S, Hwang SH, Kim C, Jang J (2012) J Mater Chem 22(24):12164

    Article  Google Scholar 

  35. Zhao B, Huang H, Jiang P, Zhao H, Huang X, Shen P, Wu D, Fu R, Tan S (2011) J Phys Chem C 115(45):22615

    Article  Google Scholar 

  36. Han LY, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R (2005) Appl Phys Lett 86(21):213501

    Article  Google Scholar 

  37. Wang Q, Moser J-E, Grätzel M (2005) J Phys Chem B 109(31):14945

    Article  Google Scholar 

  38. Sun X, Song P, Zhang Y, Liu C, Xu W, Xing W (2013) Sci Rep 3(1–5):1

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation (NSF) of China (21103039, 51302057), NSF of Anhui Province (Anhui Province Natural Funds for Distinguished Young Scientists, 1408085J06) and the Beijing National Laboratory for Molecular Sciences (J2014KJZS0202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiding Miao or Jinzhang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Zhang, S., Ma, Q. et al. Non-covalent construction of non-Pt counter electrodes for high performance dye-sensitized solar cells. J Sol-Gel Sci Technol 74, 240–248 (2015). https://doi.org/10.1007/s10971-014-3605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3605-0

Keywords

Navigation