Skip to main content
Log in

Influence of Ni doping on the structural, optical and textural properties of TiO2 nanocrystals prepared via an ultrasound assisted sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanometric TiO2 and nickel-doped TiO2 powders were obtained by thermal decomposition of non-alkoxide precursors prepared using an ultrasonic-assisted sol–gel method. Ti4+ and Ni2+ were obtained from titanium oxide sulfate hydrate and nickel sulfate hexahydrate, respectively. X-ray powder diffraction and Raman spectroscopy confirmed the formation of only the anatase phase in both oxides, and no titanates were observed. The Ni-doped material was determined to be a solid solution with a stoichiometry of Ti0.96Ni0.04O2−y. The incorporation of nickel lowers the band gap calculated from the UV–Vis diffuse reflectance spectroscopic data, and affects the specific surface area, density, and acid–base characteristics. Mesoporosity developed as a result of particle agglomeration and differed among samples, as determined based on the total pore volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509:1648–1660

    Article  Google Scholar 

  2. McNaught AD, Wilkinson A (2006) IUPAC compendium of chemical terminology, 2nd ed. (the “Gold Book”). Blackwell, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A

  3. Liu W, Chen S (2011) Visible-light activity evaluation of p–n junction photocatalyst NiO/TiO2 prepared by sol–gel method. Adv Mater Res 152:441–449

    Google Scholar 

  4. Nair J, Nair P, Mizukami F, Oosawa Y, Okubo T (1999) Microstructure and phase transformation behaviour of doped nanostructured titania. Mater Res Bull 34:1275–1290

    Article  Google Scholar 

  5. Vargas S, Arroyo R, Haro E, Rodriguez R (1999) Effects of cationic dopants on the phase transition temperature of titania prepared by the sol–gel method. J Mater Res 14:3932–3937

    Article  Google Scholar 

  6. Zhang YH, Reller A (2002) Phase transformation and grain growth of doped nanosized titania. Mater Sci Eng C 19:323–326

    Article  Google Scholar 

  7. Khan R, Kim SW, Kim TJ (2008) Synthesis and control of physical properties of titania nanoparticles as a function of synthetic parameters. J Nanosci Nanotechnol 8:4738–4742

    Article  Google Scholar 

  8. Karthik K, Pandian SK, Jaya NV (2010) Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method. Appl Surf Sci 256:6829–6833

    Article  Google Scholar 

  9. Karimipour M, Wikberg JM, Kapaklis V, Shahtahmasebi N, Abad MRR, Yeganeh M, Bagheri-Mohagheghi MM, Svedlindh P (2011) Nanoparticles of Ni/NiO embedded in TiO2 synthesized by the complex-polymer sol–gel method. Phys Scr 84:1–5

    Article  Google Scholar 

  10. Zhang D (2011) Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/Visible light assisted degradation of organic dye in aqueous solution. J Sol–Gel Sci Technol 58:312–318

    Article  Google Scholar 

  11. Karthik K, Jaya NV (2011) High pressure electrical resistivity studies on Ni-doped TiO2 nanoparticles. J Alloys Compd 509:5173–5176

    Article  Google Scholar 

  12. Martínez LM, Montes C, Odriozola JA, Centeno MA (2006) Synthesis and characterization of xerogels titania modified with Pd and Ni. J Mol Catal A 253:252–260

    Article  Google Scholar 

  13. Zhang X, Liu Q (2008) Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Appl Surf Sci 254:4780–4785

    Article  Google Scholar 

  14. Chen J, Yao M, Wang X (2008) Investigation of transition metal ion doping behaviors on TiO2 nanoparticles. J Nanopart Res 10:163–171

    Article  Google Scholar 

  15. Ganesh I, Gupta AK, Kumar PP, Sekhar PSC, Radha K, Padmanabham G, Sundararajan G (2012) Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci World J 2012:1–16

    Article  Google Scholar 

  16. Feng H, Yu LE, Zhang M-H (2013) Ultrasonic synthesis and photocatalytic performance of metal-ions doped TiO2 catalysts under solar irradiation. Mater Res Bull 48:672–681

    Article  Google Scholar 

  17. Choi J, Park H, Hoffmann MR (2010) Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C 114:783–792

    Article  Google Scholar 

  18. Choi J, Park H, Hoffmann MR (2010) Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. J Mater Res 25:149–158

    Article  Google Scholar 

  19. Olya ME, Pirkarami A, Soleimani M, Bahmaei M (2013) Photoelectrocatalytic degradation of acid dye using Ni–TiO2 with the energy supplied by solar cell: mechanism and economical studies. J Environ Manag 121:210–219

    Article  Google Scholar 

  20. Rodríguez-González V, Ruiz-Gómez MA, Torres-Martínez LM, Gómez R (2011) Photocatalytic decomposition of synthetic alizarin red S by nickel doped titania. Top Catal 54:490–495

    Article  Google Scholar 

  21. Bahadur N, Jain K, Srivastava AK, Govind GakharR, Haranath D, Dulat MS (2010) Effect of nominal doping of Ag and Ni on the crystalline structure and photo-catalytic properties of mesoporous titania. Mater Chem Phys 124:600–608

    Article  Google Scholar 

  22. Choudhury B, Choudhury A (2013) Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int Nano Lett 3:55

    Article  Google Scholar 

  23. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. Part B: applications in coordination, organometallic, and bioinorganic chemistry. Wiley, Hoboken

    Google Scholar 

  24. Murcia JJ, Hidalgo MC, Navío JA, Arana J, Dona-Rodríguez JM (2013) In situ FT-IR study of the adsorption and photocatalytic oxidation of ethanol over sulfated and metallized TiO2. Appl Catal B Environ 142–143:205–213

    Article  Google Scholar 

  25. Devi LG, Kottam N, Kumar SG, Rajashekhar KE (2010) Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Cent Eur J Chem 8:142–148

    Article  Google Scholar 

  26. Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H, Yang Y, Hou W, Hu X, Jiang Zh (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218

    Article  Google Scholar 

  27. Sunajadevi KR, Sugunan S (2004) Preparation and characterization of nanocrystalline transition metal-loaded sulfated titania through sol–gel method. Mater Lett 58:3290–3296

    Article  Google Scholar 

  28. Kimijima T, Sasaki T, Nakaya M, Kanie K, Muramatsu A (2010) Photocatalytic activity of Ni-loaded TiO2 nanoparticles precisely controlled in size and shape. Chem Lett 39:1080–1081

    Article  Google Scholar 

  29. Han TY, Wu CF, Hsieh CT (2007) Hydrotermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles. J Vac Sci Technol B 25:430–435

    Article  Google Scholar 

  30. Zhou J, Zhang Y, Zhao XS, Ray AK (2006) Photodegradation of Benzoic acid over metal-doped TiO2. Ind Eng Chem Res 45:3503–3511

    Article  Google Scholar 

  31. Santos JG, Ogasawara T, Corrêa RA (2009) Synthesis of mesoporous titania in rutile phase with pore-stable structure. Braz J Chem Eng 26:555–561

    Article  Google Scholar 

Download references

Acknowledgments

MJRA wishes to acknowledge the Grant (83059) received from CONACyT. The authors gratefully acknowledge financial support for the MEAM-EXC-10G project from VIEP-UAP. The current work was supported in part by CONACyT research projects CB-2008-01-100439, I0110/127/08 and Project MEX 08/005 (BMBF, Germany). The authors wish to thank Dr. M. González-Perea (FCQ-UAP) and M.Sc. Erik Reyes (CUVyTT-UAP) for performing the FTIR and AFM analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Elizalde-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles-Águila, M.J., Mendoza, M.E., Dávila-Jiménez, M.M. et al. Influence of Ni doping on the structural, optical and textural properties of TiO2 nanocrystals prepared via an ultrasound assisted sol–gel method. J Sol-Gel Sci Technol 69, 571–579 (2014). https://doi.org/10.1007/s10971-013-3258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3258-4

Keywords

Navigation