Skip to main content
Log in

A sol–gel methodology for the preparation of lanthanide-oxide aerogels: preparation and characterization

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lanthanide oxide-based aerogels were synthesized employing the so-called epoxide addition sol–gel method already successfully applied for main- and transition metal oxide aerogels. Using chlorides and nitrates as precursors, our aim was to test the transferability of this robust sol–gel methodology to the entire lanthanide series. By adding the proton scavenging organic epoxide, propylene oxide, to hydrated lanthanide trichloride dissolved in ethanol or methanol, uniform monolithic alcogels were obtained. Subsequent processing in supercritical CO2 resulted in monolithic aerogels. No gelling process could be induced by using nitrates, in contrast to previous results with iron oxide or alumina aerogels. All materials were characterized by nitrogen adsorption/desorption analysis, transmission electron microscopy, and powder X-ray diffraction. With the exception of cerium, for which fractions of crystalline CeO2 were found already in the as-prepared material, XRD analysis revealed that the other materials were mainly amorphous. Subsequent heat treatment of the aerogels above 650 °C resulted in nanocrystalline phases for all aerogel materials. However, except for ceria, more detailed TEM and XRD studies provided evidence that crystalline oxychloride phases are formed in addition to fractions of oxide phases. The trends and possible explanations are discussed in this contribution.

A sol–gel methodology for the preparation of lanthanide-oxide aerogels: synthesis and characterization

A sol–gel methodology using organic epoxides as proton scavengers has been used to synthesize oxide aerogels of the entire lanthanide series. As precursors, nitrates and chlorides were used but only in the latter case, gelation set in. After supercritical drying, aerogels with high surface areas and mesoporous, nanoparticulate structures were obtained. Further characterization revealed that cerium plays a special role, since it contained crystalline CeO2 fractions already before calcination. After calcination it was the only material consisting of a pure oxide phase. The syntheses with the other lanthanides resulted in mixtures with varying fractions of crystalline oxychlorides in addition to an oxide phase. The trends and possible explanations are discussed in this contribution.A sol–gel methodology using organic epoxides as proton scavengers has been used to synthesize oxide aerogels of the entire lanthanide series. As precursors, nitrates and chlorides were used but only in the latter case, gelation set in. After supercritical drying, aerogels with high surface areas and mesoporous, nanoparticulate structures were obtained. Further characterization revealed that cerium plays a special role, since it contained crystalline CeO2 fractions already before calcination. After calcination it was the only material consisting of a pure oxide phase. The syntheses with the other lanthanides resulted in mixtures with varying fractions of crystalline oxychlorides in addition to an oxide phase. The trends and possible explanations are discussed in this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cotton S (1991) Lanthanides and actinides. Oxford University Press, New York

    Google Scholar 

  2. Que W, Kam CH, Zhou Y, Lam YL, Chan YCJ (2001) Appl Phys 90:4865

    CAS  Google Scholar 

  3. Garskaite E, Jasaitis D, Kareiva A (2003) J Serb Chem Soc 68:677

    Article  CAS  Google Scholar 

  4. Hitz B (2004) In: Photonics spectra, p 112

  5. Mansuy C, Mahiou R, Nedelec JM (2003) Chem Mater 15:3242

    Article  CAS  Google Scholar 

  6. Reddy BM, Thrimurthulu G, Katta L, Yamada Y, Park SE (2009) J Phys Chem C 113:15882

    Article  CAS  Google Scholar 

  7. Borchert Y, Sonstrom P, Wilhelm M, Borchert H, Baumer M (2008) J Phys Chem C 112:3054

    Article  CAS  Google Scholar 

  8. Van der Avert P, Weckhuysen BM (2002) Angew Chem Int Ed 41:4730

    Article  Google Scholar 

  9. Skarman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) J Catal 211:119

    CAS  Google Scholar 

  10. Sauer J, Marlow F, Spliethoff B, Schuth F (2002) Chem Mater 14:217

    Article  CAS  Google Scholar 

  11. Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) J Mat Sci 34:5273

    Article  CAS  Google Scholar 

  12. Adachi GY, Imanaka N, Tamura S (2002) Chem Rev 102:2405

    Article  CAS  Google Scholar 

  13. Wu G, Zhang L, Cheng B, Xie T, Yuan X (2004) J Am Chem Soc 126:5976

    Article  CAS  Google Scholar 

  14. Rindone GE (1966) In: Goldberg P (ed) Luminescence of inorganic solids. Academic Press: New York

  15. Li Z, Wu P, Jiang X, Zhang Z, Xu S (1988) J Lumines 40–41:135

    Article  Google Scholar 

  16. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C (2004) Nature 430:761

    Article  CAS  Google Scholar 

  17. Zhu B, Liu X, Zhu Z, Ljungberg R (2008) Int J Hydrogen Energy 33:3385

    Article  CAS  Google Scholar 

  18. Hierso J, Sel O, Ringuede A, Laberty-Robert C, Bianchi L, Grosso D, Sanchez Cm (2009) Chem Mater 21:2184

    Article  CAS  Google Scholar 

  19. In: Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, London (2009)

  20. Eyring L (1979) In: Gschneidner KAJ, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland Physics Publishing: New York, p 337

  21. Eyring L (1991) In: Meyer G, Morss LR (eds) Synthesis of lanthanide and actinde compounds. Kluwer, Dordrecht

  22. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. John Wiley and Sons, New York

    Google Scholar 

  23. Shriver DF, Atkins P, Langford CH (1994) Inorganic chemistry, 2nd edn. W. H. Freeman and Company, New York

    Google Scholar 

  24. Rosynek MP (1977) Catal Rev Sci Eng 16:111

    Article  CAS  Google Scholar 

  25. Minachev KM, Antoshin GV, Guin NK, Klissurski DG, Abadzhijeva NT (1977) Chem Phys Lett 48:515

    Article  CAS  Google Scholar 

  26. Zhang Y, Lei Z, Li J, New S (2001) J Chem 25:1118

    CAS  Google Scholar 

  27. Frindell KL, Bartl MH, Popitsch A, Stucky G (2002) D Angew Chem Int Ed 41:960

    Google Scholar 

  28. Skarman B, Nakayama T, Grandjean D, Benfield RE, Olsson E, Niihara K, Wallenberg LR (2002) Chem Mater 14:3686

    Article  Google Scholar 

  29. Pol VG, Palchik O, Gedanken A, Felner I (2002) J Phys Chem B 106:9737

    Article  CAS  Google Scholar 

  30. Hungria AB, Martinez-Arias A, Fernandez-Garcia M, Iglesias-Juez A, Guerrero-Ruiz A, Calvino JJ, Conesa JC, Soria J (2003) Chem Mater 15

  31. Wen C, Liu Y, Guo Y, Wang Y, Lu G (1985) Solid State Sci 2009:11

    Google Scholar 

  32. Brinker CJ, Scherer GW (1989) Sol–Gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  33. Thundathil MA, Lai W, Noailles L, Dunn BS, Haile SM (2004) J Am Ceram Soc 87:1442

    Article  CAS  Google Scholar 

  34. Rajendran M, Mallick KK, Bhattacharya AK (1998) Mat Lett 37:10

    Article  CAS  Google Scholar 

  35. Cardenas GT, Oliva RC (2000) Mater Res Bull 35:2227

    Article  CAS  Google Scholar 

  36. Gash AE, Tillotson TM, JHS, Hrubesh LW, Simpson RL (2001) J Non Cryst Solids 285:22

  37. Gash AE, Tillotson TM, JHS, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999

  38. Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) J Sol Gel Sci Technol 1:241

    Article  CAS  Google Scholar 

  39. Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RA, Doescher MS, Rolison DR (2006) Chem Mater 18:50

    Article  CAS  Google Scholar 

  40. Dobinson B, Hoffmann W, Stark BP (1969) The determination of epoxides. Pergamon Press, Oxford

    Google Scholar 

  41. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, New York

    Google Scholar 

  42. Narula CK, Weber WH, Ying JY, Allard LF (1821) J Mater Chem 1997:7

    Google Scholar 

  43. Davolos MR, Feliciano S, Pires AM, Marques RFC, Jafelicci MJ (2003) J Solid State Chem 171:268

    Article  CAS  Google Scholar 

  44. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259

    Article  CAS  Google Scholar 

  45. Gash AE, JHS, Simpson RL (2003) Chem Mater 15:3268

  46. Wakefield G, Keron HA, Dobson PJ, Hutchison JL (1999) J Colloid Interface Sci 215:179

    Article  CAS  Google Scholar 

  47. Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) J Lumin 102–103:445

    Article  Google Scholar 

  48. Bazzi R, Flores MA, Louis C, Lebbou K, Zhang W, Dujardin C, Roux S, Mercier B, Ledoux G, Bernstein E, Perriat P, Tillement O (2004) J Colloid Interface Sci 273:191

    Article  CAS  Google Scholar 

  49. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Craig I (2000) Inorg Chem 39:595

    Article  CAS  Google Scholar 

  50. Wendlandt WW (1957) J Inorg Nucl Chem 5:118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, reference number LLNL-JRNL-562011. The authors would like to thank Christopher Chervin (LLNL) and Thorsten Gesing (University Bremen) for helpful analysis of the X-ray diffraction data. Special thanks go to Morris Wang and Jennifer S. Harper for TEM and EELS analyses and Cheng Saw for PXRD measurements. BN is grateful to the Telekom Stiftung for a stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Gash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clapsaddle, B.J., Neumann, B., Wittstock, A. et al. A sol–gel methodology for the preparation of lanthanide-oxide aerogels: preparation and characterization. J Sol-Gel Sci Technol 64, 381–389 (2012). https://doi.org/10.1007/s10971-012-2868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2868-6

Keywords

Navigation