Skip to main content
Log in

Novel preparation method of nanosilver doped sol gel TiO2 photocatalysts for dye pollutant degradation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, a novel method for the silver nanoparticle incorporation into TiO2 sol is reported which provides efficient dispersion of inserted metal in the calcined gel. Glucose mediated metal nanoparticle synthesis eliminates the additional steps for the introduction of dopant over the support. Ag nanoparticle acts as competent trapping centers preventing the recombination of electron–hole pairs. Thus, in spite of the low UV intensity present in the sunlight, considerable enhancement in the catalytic efficiency was observed for the degradation of dye pollutants over nanosilver loaded TiO2. Transmission electron microscopic images display the well isolated nanoparticles of silver having uniform dimensions of less than 5 nm over the best system, 2 wt% nanosilver loaded TiO2, which is accountable for its effectiveness as a photocatalyst. Anatase is found to be the photocatalytic active phase, as evident from the X-ray diffraction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooper P (1993) J Soc Dyers Colour 109:97–100

    Article  CAS  Google Scholar 

  2. Qin HL, Gu GB, Liu S (2008) Mater Chem Phys 112:346–352

    Article  CAS  Google Scholar 

  3. Qin HL, Gu GB, Liu S (2008) C R Chimie 11:95–100

    Article  CAS  Google Scholar 

  4. Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Ishihara S, Takasu Y, Murakami Y (2007) Catal Today 120:226–232

    Article  CAS  Google Scholar 

  5. Guczi L, Beck A, Horváth A, Koppány Z, Stefler G, Frey K, Sajó I, Geszti O, Bazin D, Lynch J (2003) J Mol Catal A 545:204–205

    Google Scholar 

  6. Huang J, Dai WL, Li H, Fan K (2007) J Catal 252:69–76

    Article  CAS  Google Scholar 

  7. Iliev V, Tomova D, Bilyarska L, Eliyas A, Petrov L (2006) Appl Catal B Environ 63:266–271

    Article  CAS  Google Scholar 

  8. Astruc D, Daniel MC (2004) Chem Rev 104:293–346

    Article  Google Scholar 

  9. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  10. Ohtani B, Okugawa Y, Nishimoto S, Kagiya T (1987) J Phys Chem 91:3550–3555

    Article  CAS  Google Scholar 

  11. He X, Zhao X, Liu B (2008) J Non-Cryst Solids 354:1267–1271

    Article  CAS  Google Scholar 

  12. Sakatani Y, Nunoshige J, Ando H, Okusako K, Koike H, Takata T, Kondo JN, Hara M, Domen K (2004) J Mater Res 19:2100–2108

    Article  CAS  Google Scholar 

  13. Sakatani Y, Nunoshiege J, Ando H, Okusako K, Koike H, Takata T, Kondo JN, Hara M, Domen K (2003) Chem Lett 32:1156–1157

    Article  CAS  Google Scholar 

  14. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG (2004) J Am Chem Soc 126:4782–4783

    Article  CAS  Google Scholar 

  15. Raveendran P, Fu J, Wallen SL (2003) J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  16. Suraja V, Yaakob Z, Binitha NN, Ebshish A, Ranjana K (2012) Reac Kinet Mech Cat 105:361–371

    Google Scholar 

  17. Sunajanadevi, S Sugunan (2004) Mater Lett 58:3290–3296

    Google Scholar 

  18. Yongmei W, Jinlong Z, Ling X, Feng C (2009) Appl Catal B Environ 88:525–532

    Article  Google Scholar 

  19. Shan Z, Lian G (2002) Mater Chem Phys 78:512–517

    Google Scholar 

  20. Hidalgo MC, Murcia JJ, Navío JA, Colón G (2011) Appl Catal A Gen 397:112–120

    Article  CAS  Google Scholar 

  21. Binitha NN, Yaakob Z, Reshmi MR, Sugunan S, Ambili VK, Zetty AA (2009) Catal Today 147:S76–S80

    Article  CAS  Google Scholar 

  22. Jacinto S, Marcos FG, James AA (2008) Catal Commun 9:1991–1995

    Article  Google Scholar 

  23. Yin S, Aita Y, Komatsu M, Sato T (2006) J Eur Ceram Soc 26:2735–2742

    Article  CAS  Google Scholar 

  24. Gribb AA, Banfield JF (1997) Am Mineral 82:717–728

    CAS  Google Scholar 

  25. Xie YB, Yuan CW (2003) Appl Catal B Environ 46:251–257

    Article  CAS  Google Scholar 

  26. Sclafani A, Mozzanega MN, Pichat P (1991) J Photochem Photobiol A 59:181–189

    Article  CAS  Google Scholar 

  27. Ao Y, Xu J, Fu D, Yuan C (2008) J Phys Chem Solids 69:2660–2664

    Article  CAS  Google Scholar 

  28. Sano T, Negishi N, Mas D, Takeuchi K (2000) J Catal 194:71–79

    Article  CAS  Google Scholar 

  29. Liu J, Li X, Zuo S, Yu Y (2007) Appl Clay Sci 37:275–280

    Article  CAS  Google Scholar 

  30. Grzechulska J, Morawski AW (2002) Appl Catal B 36:45–51

    Article  CAS  Google Scholar 

  31. Augustynski J (1993) Electrochem Acta 38:43–46

    Article  CAS  Google Scholar 

  32. Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJ (1991) J Solid State Chem 92:178–190

    Article  CAS  Google Scholar 

  33. Kääriäinen ML, Kääriäinen TO, Cameron DC (2009) Thin Solid Films 517:6666–6670

    Google Scholar 

  34. Tanaka K, Capule MFV, Hisanaga T (1991) Chem Phys Lett 187:73–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the UKM, the grant number UKM-RF-06-FRGS010-2010 for providing the assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binitha N. Narayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padikkaparambil, S., Yaakob, Z., Narayanan, B.N. et al. Novel preparation method of nanosilver doped sol gel TiO2 photocatalysts for dye pollutant degradation. J Sol-Gel Sci Technol 63, 108–115 (2012). https://doi.org/10.1007/s10971-012-2772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2772-0

Keywords

Navigation