Skip to main content

Advertisement

Log in

Silver containing sol–gel derived silica thin films: effect of aluminum incorporation on optical, microstructural and bactericidal properties

  • Orginal paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silver containing silica (Ag–SiO2) thin films with and without aluminum (Al) were prepared on soda-lime-silica glass by spin coating of aqueous sols. The coating sol was formed through mixing tetraethyl orthosilicate [Si(OC2H5)4]/ethanol solution with aqueous silver nitrate (AgNO3) and aluminum nitrate nonahydrate [(AlNO3)3·9H2O] solutions. The deposited films were calcined in air at 100, 300 and 500 °C for 2 h and characterized using x-ray diffraction, UV-visible and x-ray photoelectron spectroscopy. The effect of Al incorporation and calcination treatment on microstructure and durability of the films, and chemical/physical state of silver in the silica thin film have been reported. The bactericidal activity of the films was also determined against Staphylococcus aureus via disk diffusion assay studies before and after chemical durability tests. The investigations revealed that the optical, bactericidal properties and chemical durability of Ag–SiO2 films can be improved by Al addition. The Al-modified Ag–SiO2 thin films do not exhibit any coloring after calcination in the range of 100–500 °C, illustrating that silver is incorporated within the silica gel network in ionic form (Ag+). Al incorporation also improved the overall durability and antibacterial endurance of Ag–SiO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clement JL, Jarrett PS (1994) Met Based Drugs 1:467–482

    Article  CAS  Google Scholar 

  2. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) J Nanobiotech 3:1–10

    Article  Google Scholar 

  3. Mahltig B, Fiedler D, Böttcher H (2004) J Sol–gel Sci Techn 32:219

    Google Scholar 

  4. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo AC, Camargo ER, Barbosa DB (2009) Int J Antimicrob Ag 34:103–110

    Article  CAS  Google Scholar 

  5. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Nanomed-Nanotechnol 7:22–39

    Article  CAS  Google Scholar 

  6. Vasilev K, Griesser SS, Griesser HJ (2011) Plasma Process Polym 8:1010–1023

    Article  CAS  Google Scholar 

  7. Gibbins B, Warner L (2005) The role of antimicrobial silver nanotechnology. AcryMed Inc., Portland OR. http//www.devicelink.com/mddi/archive/05/08/005.html. Accessed 10 Jan 2012

  8. Oku T, Shigeru K, Yazawa T, Iijima T, Kumakura N (1999) US patent 5,882,808

  9. Jackson D, Leland GC (2004) US patent 6,797,278 B2

  10. De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin G (1996) J Appl Phys 80:6734–6739

    Article  CAS  Google Scholar 

  11. Jeon HY, Yi SC, Oh SG (2003) Biomaterials 24:4921–4928

    Article  CAS  Google Scholar 

  12. Li W, Seal S, Megan E, Ramsdell J, Scammon K, Lelong G, Lachal L, Richardson KA (2003) J Appl Phys 93:9553–9561

    Article  CAS  Google Scholar 

  13. Mahltig B, Gutmann E, Meyer DC, Reibold M, Bund A, Böttcher H (2009) J Sol–gel Sci Techn 49:202–208

    Article  CAS  Google Scholar 

  14. Akhavan O, Ghaderi E (2009) Curr Appl Phys 9:1381–1385

    Article  Google Scholar 

  15. Durucan C, Akkopru B (2010) J Biomed Mater Res B 93B:448–458

    CAS  Google Scholar 

  16. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) J Appl Polym Sci 101:2938–2943

    Article  CAS  Google Scholar 

  17. Xu K, Wang J-X, Kang X-L, Chen J-F (2009) Mater Lett 63:31–33

    Article  CAS  Google Scholar 

  18. Veerapandian M, Yun K (2010) Polym Composite 31:1620–1627

    Article  CAS  Google Scholar 

  19. Krylova G, Eremenko A, Smirnova N, Eustis S (2005) Int J Photoenergy 7:193–198

    Article  CAS  Google Scholar 

  20. Deng Z, Chen M, Wu L (2007) J Phys Chem C 111:11692–11698

    Article  CAS  Google Scholar 

  21. Tuval T, Gedanken A (2007) Nanotechnology 18:255601–255606

    Article  Google Scholar 

  22. Bloch E, Llewellyn PL, Vincent D, Chaspoul F, Hornebecq V (2010) J Phys Chem C 114:22652–22658

    Article  CAS  Google Scholar 

  23. Pan AL, Zheng HG, Yang ZP, Liu FX, Ding ZJ, Qian YT (2003) Mater Res Bull 38:789–796

    Article  CAS  Google Scholar 

  24. García MA, Paje SE, Llopis J, Villegas MA, Fernández Navarro JM (1999) J Phys D Appl Phys 32:975–980

    Article  Google Scholar 

  25. Uanghui FG, Jiafeng D, Donghui P, Ouli H (1989) J Non-Cryst Solids 112:454–457

    Article  Google Scholar 

  26. Akkopru Akgun B, Durucan C, Mellott NP (2011) J Sol–gel Sci Techn 58:277–289

    Google Scholar 

  27. Kawashita M, Toda IS, Kim H-M, Kokubo T, Masuda N (2003) J Biomed Mater Res A 66A:266–274

    Article  CAS  Google Scholar 

  28. Masuda N, Kawashita M, Kokubo T (2007) J Biomed Mater Res B 83B:114–120

    Article  CAS  Google Scholar 

  29. Hilonga A, Kim JK, Sarawade PB, Kim HT (2009) Appl Surf Sci 255:8239–8245

    Article  CAS  Google Scholar 

  30. Ritzer B, Villegas MA, Fernández Navarro JM (1997) J Sol–gel Sci Techn 8:917–921

    CAS  Google Scholar 

  31. Akkopru B, Durucan C (2007) J Sol–gel Sci Techn 43:227–236

    Article  CAS  Google Scholar 

  32. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) J Phys Chem C 111:3629–3635

    Article  CAS  Google Scholar 

  33. Dai W-L, Cao Y, Ren L-P, Yang X-L, Xu J-H, Li H-X, He H-Y, Fan K-N (2004) J Catal 228:80–91

    Article  CAS  Google Scholar 

  34. Trukhin AN, Jansons JL, Truhins K (2004) J Non-Cryst Solids 347:80–86

    Article  CAS  Google Scholar 

  35. Berneschi S, Bettinelli M, Brenci M, Nuni Conti G, Pelli S, Sebastiani S, Siligardi C, Speghini A, Righini GC (2005) J Non-Cryst Solids 351:1747–1753

    Google Scholar 

  36. Padmaja P, Warier KGK, Padmanabhan M, Wunderlich W, Berry FJ, Mortimer M, Creamer NJ (2006) Mater Chem Phys 95:56–61

    Article  CAS  Google Scholar 

  37. Hammond JS, Gaarenstroom SW, Winograd N (1975) Anal Chem 47:2193–2199

    Article  CAS  Google Scholar 

  38. Hoflund GB, Hazos ZF, Salaita GN (2000) Phys Rev B 62:11126–11133

    Article  CAS  Google Scholar 

  39. Batyan EU, Matveichuk SV, Branitskii GA (1995) Kinet Catal 36:816–820

    CAS  Google Scholar 

  40. Weast R, Astle M (1979) In: Raton B (ed) CRC handbook of chemistry and physics. CRC, FL, USA

    Google Scholar 

  41. Yano T, Nagano T, Lee J, Shibata S, Yamane M (2000) J Non-Cryst Solids 270:163–171

    Article  CAS  Google Scholar 

  42. Catan F, De Sousa Meneses D, Blondeau JP, Allam L (2008) J Non-Cryst Solids 354:1026–1031

    Google Scholar 

  43. Paje SE, Garcia MA, Llopis J, Villegas MA (2003) J Non-Cryst Solids 318:239–247

    Article  CAS  Google Scholar 

  44. Bruckner R, Chun H-U, Goretzki H (1978) Glastechn Ber-Glass 51:1–7

    Google Scholar 

  45. Houde-Walter SN, Inman JM, Dent AJ, Greaves GN (1993) J Phys Chem 97:9330–9336

    Article  CAS  Google Scholar 

  46. Louis M Jr (1999) Ion exchange of mixed-alkali glasses, PhD Thesis, Alfred University, New York, USA

  47. Nesbitt HW, Bancroft GM, Henderson GS, Ho R, Dalby KN, Huang Y, Yan Z (2011) J Non-Cryst Solids 357:170–180

    Article  CAS  Google Scholar 

  48. Sinton CW, LaCourse WC (2001) Mater Res Bull 36:2471–2479

    Article  CAS  Google Scholar 

  49. Salman S, Darwish H, Mahdy EA (2008) Mater Chem Phys 112:945–958

    Article  CAS  Google Scholar 

  50. Norton FJ (1953) J Am Ceram Soc 36:90–99

    Article  CAS  Google Scholar 

  51. Barrer RM (1941) Diffusion in and through solids. Cambridge University, Cambridge

    Google Scholar 

  52. Alexander GB, Heston WM, Ila RK (1954) J Phys Chem 58:453–455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under 106M061, Alfred University, and the 3M Non-Tenured Faculty Grant (NPM). BAA also thanks TUBITAK for the support through 2214 National Scholarship Program for PhD students. The authors would like to thank Feza Korkusuz and Nusret Taheri of METU Medical Center for their help in antibacterial tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Durucan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgun, B.A., Mellott, N.P. & Durucan, C. Silver containing sol–gel derived silica thin films: effect of aluminum incorporation on optical, microstructural and bactericidal properties. J Sol-Gel Sci Technol 62, 240–251 (2012). https://doi.org/10.1007/s10971-012-2718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2718-6

Keywords

Navigation