Skip to main content
Log in

Mechanical properties of hexylene- and phenylene-bridged polysilsesquioxane aerogels and xerogels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bridged polysilsesquioxanes are increasingly used to prepare protective coatings, particulate chromatographic materials, and adsorbents. However, little is known about the mechanical properties of the materials and how they are influenced by the nature of the bridging group. In this paper, we have prepared monolithic xerogels and aerogels of hexylene- and phenylene-bridged polysilsesquioxanes and have measured their flexural strength and modulus. Consistent with their compact structure, the porous, glassy phenylene- and hexylene-bridged xerogels were hundreds of stronger than the analogous aerogels. The nature of the bridging group did not appear to affect the mechanical properties of the xerogels, in contrast, it presented a profound effect on the mechanical properties of the aerogels. Phenylene-bridged aerogels were brittle and 30% stronger than silica aerogels of the same density. However, the opaque hexylene-bridged aerogels were found to be elastic and appreciably weaker than the phenylene-bridged or silica aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kohjiya S, Ikeda Y (2000) Rubber Chem Technol 73:534–550

    Article  CAS  Google Scholar 

  2. Pan G, Schaefer DW, van Ooij WJ, Kent MS, Majewski J, Yim H (2006) Thin Solid Films 515:2771–2780

    Article  CAS  Google Scholar 

  3. Wyndham KD, O’Gara JE, Walter TH, Glose KH, Lawrence NL, Alden BA, Izzo GS, Hudalla CJ, Iraneta PC (2003) Anal Chem 75:6781–6788

    Article  CAS  Google Scholar 

  4. Moreau JJE, Man MWC (1998) Coord Chem Rev 178–180:1073–1084

    Article  Google Scholar 

  5. Vlasova NN, Pozhidaev YN, Raspopina OY, Belousova LI, Voronkov MG (1999) Russ J Gen Chem 69:1391–1394

    CAS  Google Scholar 

  6. Choi KM, Shea KJ (1998) In: Wise G, Wnik G, Trantolo M, Graham B (eds) Photonic polymer synthesis. Marcel Dekker, New York, p 437

  7. Hatton BD, Landskron K, Whitnall W, Perovic DD, Ozin GA (2005) Adv Funct Mater 15:823–829

    Article  CAS  Google Scholar 

  8. Small JH, Shea KJ, Loy DA (1993) J Non-Cryst Solids 160:234–246

    Article  CAS  Google Scholar 

  9. Shea KJ, Loy DA, Webster O (1992) J Am Chem Soc 114:6700–6710

    Article  CAS  Google Scholar 

  10. Corriu RJP, Moreau JJE, Thepot P, Wong Chi Man M (1992) Chem Mater 4:1217–1224

    Article  CAS  Google Scholar 

  11. Jin C, List S, Yamanaka S, Lee WW, Taylor K, Hsu W-Y, Olsen L, Luttmer JD, Havemann R, Smith D, Ramos T, Maskara A (1997) Mater Res Soc Symp Proc 443:99–104

    Article  CAS  Google Scholar 

  12. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258–5261

    Article  CAS  Google Scholar 

  13. Khiterer M, Shea KJ (2007) Nano Lett 7:2684–2687

    Article  CAS  Google Scholar 

  14. Loy DA, Shea KJ, Russick EM (1992) Mater Res Soc Symp Proc 271(Better Ceramics through Chemistry V), 699–704

  15. Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) J Non-Cryst Solids 186:44–53

    Article  CAS  Google Scholar 

  16. Cao G, Tian H (1998) J Sol–Gel Sci Technol 13:305–309

    Article  CAS  Google Scholar 

  17. Lindner E, Schneller T, Auer F, Mayer HA (1999) Angew Chem Int Ed Engl 38:2155–2174

    Article  CAS  Google Scholar 

  18. Shea KJ, Loy DA (2001) Chem Mater 13:3306–3319

    Article  CAS  Google Scholar 

  19. Loy DA, Shea KJ (1995) Chem Rev 95:1431–1442

    Article  CAS  Google Scholar 

  20. Loy DA, Carpenter JP, Yamanaka SA, McClain MD, Greaves J, Hobson S, Shea KJ (1998) Chem Mater 10:4129–4140

    Article  CAS  Google Scholar 

  21. Sharp KG, Michalczyk MJ (1997) J Sol–Gel Sci Technol 8:541–546

    CAS  Google Scholar 

  22. Hobson ST, Shea KJ (1997) Chem Mater 9:616–623

    Article  CAS  Google Scholar 

  23. Guo H, Nguyen BN, McCorkle LS, Shonkwiler B, Meador MAB (2009) J Mater Chem 19:9054–9062

    Article  CAS  Google Scholar 

  24. Nguyen BN, Meador MAB, Tousley ME, Shonkwiler B, McCorkle L, Scheiman DA, Palczer A (2009) ACS Appl Mater Interfaces 1:621–630

    Article  CAS  Google Scholar 

  25. Hayashi S, Hayamizu K (1991) Bull Chem Soc Jpn 64:685–687

    Article  CAS  Google Scholar 

  26. Wazeer IMM, Isab AA, Perzanowski HP (2003) Magn Reson Chem 41:1026–1029

    Article  CAS  Google Scholar 

  27. Woignier T, Phalippou J (1988) J Non-Crystal Solids 100:404–408

    Article  CAS  Google Scholar 

  28. Kirkbir F, Murata H, Meyers D, Chaudhuri SR, Sarkar A (1994) J Non-Crystal Solids 178:284–292

    Article  CAS  Google Scholar 

  29. Einarsrud M-A, Nilsen E, Rigacci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) J Non-Crystal Solids 285:1–7

    Article  CAS  Google Scholar 

  30. Woignier T, Reynes J, Hafidi Alaoui A, Beurroies I, Phalippou J (1998) J Non-Crystal Solids 241:45–52

    Article  CAS  Google Scholar 

  31. Lucas EM, Doescher MS, Ebenstein DM, Wahl KJ, Rolison DR (2004) J Non-Crystal Solids 350:244–252

    Article  CAS  Google Scholar 

  32. Dubois G, Volksen W, Magbitang T, Miller RD, Gage DM, Dauskardt RH (2007) Adv Mater 19:3989–3994

    Article  CAS  Google Scholar 

  33. Wang W, Grozea D, Kim A, Perovic DD, Ozin GA (2010) Adv Mater 22:99–102

    Article  CAS  Google Scholar 

  34. Chuppina SV, Zhabrev VA, Baragunova VS (2009) Glass Phys Chem 35:67–73

    Article  CAS  Google Scholar 

  35. Alaoui AH, Woignier T, Scherer GW, Jean Phalippou J (2008) J Non-Crystal Solids 354:4556–4561

    Article  CAS  Google Scholar 

  36. Skochdopole RE, Rubens LC (1965) J Cell Plast 1:91–96

    Article  CAS  Google Scholar 

  37. Deanin RD, Kapasi VC, Georagacopoulos CN, Picard RJ (1974) Polym Eng Sci 14:192–200

    CAS  Google Scholar 

  38. Takahashi R, Sato S, Sodesawa T, Goto T, Matsutani K, Mikami N (2005) Mater Res Bull 40:1148–1156

    Article  CAS  Google Scholar 

  39. Wei T-Y, Lu S-Y, Chang Y-C (2008) J Phys Chem B 112:11881–11886

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Energy Materials Corporation (EMC) for supporting this work, the University of Arizona, University Spectroscopy and Imaging Facility, Mass Spectroscopy Facility and Brian Cherry from the Department of Chemistry at Arizona State University for solids NMR work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Loy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boday, D.J., Stover, R.J., Muriithi, B. et al. Mechanical properties of hexylene- and phenylene-bridged polysilsesquioxane aerogels and xerogels. J Sol-Gel Sci Technol 61, 144–150 (2012). https://doi.org/10.1007/s10971-011-2603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2603-8

Keywords

Navigation