Skip to main content
Log in

Antibacterial glass films prepared on metal surfaces by sol–gel method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper describes the preparation and characterization of glass films consisting of SiO2, Li2O, Na2O, K2O or MgO in varying compositions on stainless steel and aluminum substrates by sol–gel method. Silver phosphate or silver incorporated zeolite was also introduced into the sols for obtaining antibacterial effect. The SiO2/Li2O/Na2O system having the composition of 85:5:10 wt% was found as the optimum for obtaining a stable sol and film formation. The films were investigated by scanning electron microscopy (SEM) and electron dispersive analysis by X-ray (EDX), Fourier transformed infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA). Homogenous films having 300 ± 20 nm thicknesses were formed by spin coating and then by curing at 500 °C for 1 h. Obtained films had high adherence to the metal substrates and they were also durable in acidic, basic or NaCl environments. They also presented a powerful antibacterial effect against E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mat Sci Eng R 65:39–104

    Article  Google Scholar 

  2. Gümpel P, Arlt N, Telegdi J, Schiller D, Moos O (2006) Microbiological influence on the electro-chemical potential of stainless steel. Mater Corros 57:715–723

    Article  Google Scholar 

  3. Baena MI, Marquez MC, Matres V, Botella J, Ventosa A (2006) Bactericidal activity of copper and niobium-alloyed austenitic stainless steel. Curr Microbiol 53:491–495

    Article  CAS  PubMed  Google Scholar 

  4. De Damborenea JJ, Cristóbal AB, Arenas MA, López V, Conde A (2007) Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity. Mater Lett 61:821–823

    Article  Google Scholar 

  5. Sreekumari KR, Nandakumar K, Takao K, Kikuchi Y (2003) Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion. ISIJ Int 43:1799–2806

    Article  CAS  Google Scholar 

  6. Zhao Q, Liu Y, Wang C, Wang S, Peng N, Jeynes C (2008) Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Med Eng Phys 30:341–349

    Article  CAS  PubMed  Google Scholar 

  7. Yu B, Davis EM, Hodges RS (2008) Surface nanocrystallization of stainless steel for reduced biofilm adherence. Nanotechnology 19:335101.1–335101.8

    Google Scholar 

  8. Bambauer R, Mestres P, Pirrung KJ (1994) Scanning electron-microscopic investigation of catheters for blood access. Artif Organs 18:272–275

    Article  CAS  PubMed  Google Scholar 

  9. Sioshansi P (1994) New processes for surface-treatment of catheters. Artif Organs 18:266–271

    Article  CAS  PubMed  Google Scholar 

  10. Meinert K, Uerpmann C, Matschullat J (1998) Corrosion and leaching of silver doped ceramic IBAD coatings on SS 316L under simulated physiological conditions. Surf Coat Technol 104:58–65

    Article  Google Scholar 

  11. Akhavan O, Ghaderi E (2009) Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys 9:13811385

    Article  Google Scholar 

  12. Husheng J, Wensheng H, Liqiao W, Bingshe X, Xuguang L (2008) The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater 24:244–249

    Article  Google Scholar 

  13. Jansen JC, Kascchiev D, Erdem-Senatalar A (1994) In: Jansen JC, Stöcker M, Karge HG, Weitkamp J (eds) Advanced zeolite science and applications, studies in surface science and catalysis, vol. 85. Elsevier, Amsterdam

    Google Scholar 

  14. Jeong YM, Lee JK, Ha SC, Kim SH (2009) Fabrication of cobalt-organic composite thin film via plasma-enhanced chemical vapor deposition for antibacterial applications. Thin Solid Films 517:2855–2858

    Article  CAS  ADS  Google Scholar 

  15. Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104

    Article  CAS  Google Scholar 

  16. Kupfer H, Richter F, Friedrich S, Spies HJ (1995) Deposition and properties of tin/carbon multilayers for corrosion protection of steel. Surf Coat Technol 74–75:333–338

    Article  Google Scholar 

  17. Radin S, Ducheyne P (2007) Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomater 28:1721–1729

    Article  CAS  Google Scholar 

  18. Burunkaya E, Kesmez O, Kiraz N, Camurlu HE, Asilturk M, Arpac E (2010) Sn4+ or Ce3+ doped TiO2 photocatalytic nanometric films on antireflective nano-SiO2 coated glass. Mater Chem Phys 120:272–276

    Article  CAS  Google Scholar 

  19. Schmidt H (1994) Multifunctional inorganic-organic composite sol–gel coatings for glass surfaces. J Non-Cryst Solids 178:302–312

    Article  CAS  ADS  Google Scholar 

  20. Dislich H (1986) Sol–Gel—science, processes and products. J Non Cryst Solids 80:115–121

    Article  CAS  ADS  Google Scholar 

  21. Burunkaya E, Kiraz N, Kesmez O, Camurlu HE, Asilturk M, Arpac E (2010) Preparation of aluminum-doped zinc oxide (AZO) nano particles by hydrothermal synthesis. J Sol–Gel Sci Technol. doi: 10.1007/s10971-010-2229-2

  22. Brinker CJ, Scherer GW (1985) Sol–gel-glass 1 gelation and gel structure. J Non-Cryst Solids 70:301–322

    Article  CAS  ADS  Google Scholar 

  23. Pavon J, Jimenez-Pique E, Anglada M, Lopez-Esteban S, Saiz E, Tomsia AP (2006) Stress–corrosion cracking by indentation techniques of a glass coating on Ti6Al4V for biomedical applications. J Eur Ceram Soc 26:1159–1169

    Article  CAS  Google Scholar 

  24. Mennig M, Jonschker G, Schmidt H (1998) Verfahren zum versehen einer metallischen oberflache mit einer glasartigen schicht. German Patent No: DE197 14 949 A 1

  25. New Test Method for Optical Imaging Evaluation of Adhesion by Tape Test Specimens, ASTM D 3359 WK97

  26. Nelson DL, Cox MM (2004) In: Freeman WH (ed) Lehninger principles of biochemistry

  27. Kiruthika P, Subasri R, Jyothirmayi A, Sarvani K, Hebalkar NY (2010) Effect of plasma surface treatment on mechanical and corrosion protection properties of UV-curable sol–gel based GPTS-ZrO2 coatings on mild steel. Surf Coat Technol 204:1270–1276

    Article  CAS  Google Scholar 

  28. Mendez-Vivar J, Mendoza-Bandala A (2000) Spectroscopic study on the early stages of the polymerization of hybrid TEOS-RSi (OR’)3 sols. J Non-Cryst Solids 261:127–136

    Article  CAS  ADS  Google Scholar 

  29. Vinogradova E, Estrada M, Moreno A (2006) Colloidal aggregation phenomena: spatial structuring of TEOS-derived silica aerogels. J Colloid Interface Sci 298:209–212

    Article  CAS  PubMed  Google Scholar 

  30. Mahajan AM, Patil LS, Bange JP, Gautam DK (2004) Growth of SiO2 films by TEOS-PECVD system for microelectronics applications. Surf Coat Technol 183:295–300

    Article  CAS  Google Scholar 

  31. Zhang X, Wu Y, He S, Yang D (2007) Structural characterization of sol–gel composites using TEOS/MEMO as precursors. Surf Coat Technol 201:6051–6058

    Article  CAS  Google Scholar 

  32. Chang-Wei L, Zhong H, Tong-Geng X, Yun-Xian C, Lan L (1999) TG-DTA-MS and DSC studies on the thermal-treatment process of the 20% AlO3/2-SiO2-epoxySiO3/2 organic ± inorganic hybrid system. Thermochim Acta 334:149–155

    Article  CAS  Google Scholar 

  33. Xu H, Navrotsky A, Nyman M, Nenoff TM (2004) Crystal chemistry and energetics of pharmacosiderite-related microporous phases in the K2O–Cs2O–SiO2–TiO2–H2O system. Microporous Mesoporous Mater 72:209–218

    Article  CAS  Google Scholar 

  34. Dey SK, Zuleeg R (1990) Processing and parameters of sol–gel PZT thin-films for GaAs memory applications. Ferroelectrics 112:309–319

    CAS  Google Scholar 

  35. Arslan O, Arpac E, Sayılkan H (2010) Siliconcarbide embedded hybrid nanocomposites as abrasion resistant coating. J Inorg Organomet Polym 20:284–292

    Article  CAS  Google Scholar 

  36. Standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials, ASTM E 2180-01

  37. Tatar P, Kiraz N, Asiltürk M, Sayılkan F, Sayılkan H, Arpaç E (2007) Antibacterial thin films on glass substrate by sol–gel process. J Inorg Organomet Polym 17:525–533

    Article  CAS  Google Scholar 

  38. Hairong L, Chen Q, Song L, Ye R, Lu J, Li H (2008) Ag-doped antibacterial porous materials with slow release of silver ions. J Non Cryst Solids 354:1314–1317

    Article  Google Scholar 

Download references

Acknowledgment

Authors would like to thank Akdeniz University Research Fund for financial support. Technical and financial support of NANOen and Mattek is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Kiraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiraz, N., Kesmez, Ö., Burunkaya, E. et al. Antibacterial glass films prepared on metal surfaces by sol–gel method. J Sol-Gel Sci Technol 56, 227–235 (2010). https://doi.org/10.1007/s10971-010-2298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2298-2

Keywords

Navigation