Skip to main content
Log in

Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A novel kind of mesoporous tungsten oxide films (TOFs) has been prepared via a non-ionic surfactant templated sol–gel route from cheap and easy handling tungstic acid. Characterisations by means of various techniques, including XRD, TEM, SEM, ATR and DTA, confirm that the obtained mesostructures are composed of fine mesopores (2–3 nm) and thin pore walls. Compared with previously reported surfactant templated mesoporous TOFs, our initial evaluation on the electrochromic properties showed that the derived TOFs show greatly enhanced colouration efficiency of 44 cmC−1 and faster colouration/bleaching speed of 10/2 s, respectively. Owing to the ordering of mesostructures delivered by our method, the mesostructural changes associated with the electrochemical reaction during the electrochromic cycling of such materials can be directly monitored by low-angle XRD measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Monk PMS, Mortimer RJ, Rosseinsky DR (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Granqvist CG (2000) Sol Energy Mater Sol Cells 60:201

    Article  CAS  Google Scholar 

  3. Livage J, Ganguli D (2001) Sol Energy Mater Sol Cells 68:365

    Article  CAS  Google Scholar 

  4. Patra A, Auddy K, Ganguli D, Livage J, Biswas PK (2004) Mater Lett 58:1059

    Article  CAS  Google Scholar 

  5. Munro B, Kramer S, Zapp P, Drug H (1998) J Sol–Gel Sci Technol 13:673

    Article  CAS  Google Scholar 

  6. Zhuang L, Xu X, Shen H (2003) Surf Coat Technol 167:217

    Article  CAS  Google Scholar 

  7. Leftheriotis G, Papaefthimiou S, Yianoulis P, Siokou A, Kefalas D (2003) Appl Surf Sci 218:275

    Article  CAS  ADS  Google Scholar 

  8. Deepa M, Sharma R, Basu A, Agnihotry SA (2005) Electrochim Acta 50:3545

    Article  CAS  Google Scholar 

  9. Rougier A, Portemer F, Quédé A, EI Marssi M (1999) Appl Surf Sci 153:1

    Article  CAS  ADS  Google Scholar 

  10. Dipaola A, Diquarto F, Sunseri C (1978) J Electrochem Soc 125:1344

    Article  CAS  Google Scholar 

  11. Faughnan BW, Crandall RS, Heyman PM (1975) RCA Rev 36:177

    CAS  Google Scholar 

  12. Baeck SH, Jaramillo T, Stucky GD, McFarland EW (2002) Nano Lett 2:831

    Article  CAS  ADS  Google Scholar 

  13. Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarland EW (2003) Adv Mater 15:1269

    Article  CAS  Google Scholar 

  14. Baeck SH, Jaramillo TF, Brandli C, McFarland EW (2002) J Comb Chem 4:563

    Article  CAS  PubMed  Google Scholar 

  15. Meulenkamp EA (1997) J Electrochem 144:1664

    Article  CAS  Google Scholar 

  16. Yang B, Li HJ, Blackford M, Luca V (2006) Curr Appl Phys 6:436

    Article  ADS  Google Scholar 

  17. Cantalini C, Pelino M, Sun HT, Faccio M, Santucci S, Lozzi L, Passacantando M (1996) Sens Actuators B 35–36:112

    Article  Google Scholar 

  18. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  ADS  Google Scholar 

  19. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  20. Wang W, Song M (2005) Mater Res Bull 40:1737

    Article  CAS  Google Scholar 

  21. Wang W, Song M (2006) Mater Res Bull 41:436

    Article  Google Scholar 

  22. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813

    Article  CAS  Google Scholar 

  23. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152

    Article  CAS  ADS  Google Scholar 

  24. Deepa M, Srivastava AK, Sood KN, Agnihotrym SA (2006) Nanotechnology 17:2625

    Article  CAS  ADS  Google Scholar 

  25. Deepa M, Srivastava AK, Sharma SN, Govind, Shivaprasad SM (2008) Appl Surf Sci 254:2342

  26. Cheng W, Baudrin E, Dunn B, Zink JI (2001) J Mater Chem 11:92

    Article  CAS  Google Scholar 

  27. Lai WH, Shieh J, Teoh LG, Hung IM, Liao CS, Hon MH (2005) J Alloy Compd 396:295

    Article  CAS  Google Scholar 

  28. Lai WH, Teoh LG, Su YH, Shieh J, Hon MH (2007) J Am Ceram Soc 90:4073

    CAS  Google Scholar 

  29. Ozkan E, Lee SH, Liu P, Tracy CE, Tepehan FZ, Pitts JR, Deb SK (2002) Solid State Ion 149:139

    Article  CAS  Google Scholar 

  30. Sallard S, Brezesinski T, Smarsly BM (2007) J Phys Chem C 111:7200

    Article  CAS  Google Scholar 

  31. Brezesinski T, Rohlfing DF, Sallard S, Antonietti M, Smarsly BM (2006) Small 2:1203

    Article  CAS  PubMed  Google Scholar 

  32. Zayim EO, Liu P, Lee SH, Tracy CE, Turner JA, Pitts JR, Deb SK (2003) Solid State Ion 165:65

    Article  Google Scholar 

  33. Gesheva KA, Ivanova T, Hamelmann F (2006) Sol Energy Mater Sol Cells 90:2532

    Article  CAS  Google Scholar 

  34. Livage J, Guzman G (1996) Solid State Ion 84:205

    Article  CAS  Google Scholar 

  35. Qi ZM, Zhou HS, Watanabe T, Honma I (2004) J Mater Chem 14:3540

    Article  CAS  Google Scholar 

  36. Wang W, Pang YX, Hodgson SNB (2009) Microporous Mesoporous Mater 121:121

    Article  CAS  Google Scholar 

  37. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242

    Article  PubMed  ADS  Google Scholar 

  38. Bagshaw SA, Pinnavaia TJ (1996) Angew Chem Int Ed Engl 35:1102

    Article  CAS  Google Scholar 

  39. Kim S, Pauly TR, Pinnavaia TJ (2000) Chem Commun 1661

  40. Lei J, Liu D, Guo L, Yan X, Tong H (2006) J Sol–Gel Sci Technol 39:169

    Article  CAS  Google Scholar 

  41. Yuan JG, Zhang YZ, Le J, Song LX, Hu XF (2007) Mater Lett 61:1114

    Article  CAS  Google Scholar 

  42. Deepa M, Singh P, Sharma SN, Agnihotry SA (2006) Sol Energy Mater Sol Cells 90:2665

    Article  CAS  Google Scholar 

  43. Deepa M, Sharma N, Varshney P, Agnihotry SA (2000) J Mater Sci 35:5313

    Article  CAS  Google Scholar 

  44. Kim DJ, Pyun SI (1997) Solid State Ion 99:185

    Article  CAS  Google Scholar 

  45. Antonaia A, Addonizio ML, Minarini C, Polichetti T, V-Antisari M (2001) Electrochim Acta 46:2221

    Article  CAS  Google Scholar 

  46. Antonaia A, Polichetti T, Addonizio ML, Aprea S, Mi-narini C, Rubino A (1999) Thin Solid Films 354:73

    Article  CAS  ADS  Google Scholar 

  47. Granqvist CG (2002) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N. B. Hodgson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Pang, Y. & Hodgson, S.N.B. Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid. J Sol-Gel Sci Technol 54, 19–28 (2010). https://doi.org/10.1007/s10971-010-2152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2152-6

Keywords

Navigation