Skip to main content
Log in

Status of sol–gel process for nuclear fuels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel process provides an alternate route for fabrication of ceramic nuclear fuel. The sol–gel process provides several advantages over the conventional powder pellet fabrication process by eliminating handling of radioactive powders. The sol–gel process uses only fluids or fluid like materials, thus become amenable to remote handling. The sol–gel process has been developed for the production of coated particle fuels for High Temperature Gas Cooled Reactors (HTGRs), as sphere-pac fuel for Fast Breeder Reactors (FBRs) and as SGMP fuel for Thermal Reactors. Internal Gelation Process is one of the most important routes of the sol–gel process and has been accepted as the most promising process route globally. Several countries having plutonium or 233U based fuel program have developed sol–gel process for nuclear fuels. In India there is special interest for the development of the sol–gel process for the thorium–uranium fuels keeping in view the large resources of thorium in India. Sol–gel process for fuel fabrication is also very attractive route for closing the nuclear fuel cycle efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lackey WJ, Selle JE et al (1978) ORNL-5468

  2. Ganguli C, Basak U, Vaidya VN, Sood DD, Roy PR (1989) In: Proc Second Inter Conf On Candu Fuel. Ontario Canada, p 108

  3. Symposium on Sol–Gel Process and Reactor Fuel Cycles (1970) Conf 700 502 Gatlinburg

  4. Sol–Gel Process for Fuel Fabrication (1974) IAEA Vienna, IAEA-161

  5. Karsten PR (1974) ANS Topical Meeting Gatlinburg Tennesse, Conf 740501

  6. Lotts LA, Kartsen PR (1977) P. R. ORNL-5266

  7. Haas PA (1972) ORNL/TM-3978

  8. Haas PA (1969) ORNL 4398

  9. Haas PA, Kitts FG, Beutler H (1967) Chem Eng Progr Symp Ser 63(80):16–27

    CAS  Google Scholar 

  10. Finney BC, Haas PA (1972) ORNL-4802

  11. McBride JP (1966) ORNL- 3874

  12. Verheugen JNH (1977) ECN-77-030

  13. Hardy Sol–Gel Process for Ceramic Nuclear Fuels (1968) IAEA Vienna STI/pub 207

  14. Facchini AG (1970) Trans Am Nucl Soc 13:46

    Google Scholar 

  15. Facchini AG, Gerantopoulos P (1974) IAEA 161:227

    Google Scholar 

  16. Kakarao VM, Semanov BA, Skotnikov AS (1974) IAEA 161:71

    Google Scholar 

  17. Stratton RW (1977) Advanced LMFBR Fuels, p 349

  18. Hellwig Ch et al (2003) Global 2003, p 1348

  19. Shigetome Y et al (2003) Global 2003, p 1342

  20. Beatty RL, Norman RE, Notz KJ (1979) ORNL/TM–5469

  21. Del Cul GD, Mattus CH, Icenhour AS, Felker LK, Williams DF (2005) ORNL/TM-2005/108

  22. Icenhour AS, Williams DF (2005) ORNL/TM-2005/41

  23. Wymer RG (1968) ORNL-TM-2205

  24. Ganguli C, Langen H, Zimmer E, Mertz ER (1986) Nucl Tech 73:84

    Google Scholar 

  25. Facchini AG (1970) Energ Nucl 17:225

    CAS  Google Scholar 

  26. Kanij JBW, Noothout AJ, Votocek O (1974) IAEA 161:185

    Google Scholar 

  27. Vaidya VN, Mukerjee SK, Joshi JK, Kamat RV, Sood DD (1987) J Nucl Mater 148:324

    Article  CAS  Google Scholar 

  28. Kumar N, Sharma RK, Ganatra VR, Mukerjee SK, Vaidya VN, Sood DD (1991) Nucl Technol 96:169

    CAS  Google Scholar 

  29. Sharma RK, Kumar N, Ganatra VR, Naronha DM, Vaidya VN, Sood DD (1986) Seminar on fast reactor fuel cycle. RRC, Kalpakkam, Madras

    Google Scholar 

  30. Vaidya VN, Kamat RV, Joshi JK, Iyer VS, Pillai KT, Sood DD (1981) Nuclear and Radiochemistry Symposium. Banaras, Varanasi

  31. Collins JL, Lloyd MH, Fellows RL (1987) Radiochemica Acta 42:121

    CAS  Google Scholar 

  32. Lloyd MH, Biscoff K, Peng K, Nissen HU, Wessicken R (1976) J Inorg Nucl Chem 38:1141

    Article  CAS  Google Scholar 

  33. Suryanarayana S, Kumar N, Bamankar YR, Vaidya VN, Sood DD (1996) J Nucl Mater 230:67

    Article  Google Scholar 

  34. Pai RV, Mukherjee SK, Vaidya VN (2004) J Nucl Mater 325:159

    Article  CAS  Google Scholar 

  35. Kumar N, Pai RV, Joshi JK, Mukerjee SK, Vaidya VN, Venugopal V (2006) J Nucl Mater 359:69

    Article  CAS  Google Scholar 

  36. Ganatra VR, Kumar N, Suryanarayana S, Bamankar YR, Raghu N, Vaidya VN, Mukerjee SK (2008) accepted for publication in J Radioanal and Nucl Chem 275(3)

  37. Mukerjee SK, Dehadraya JV, Vaidya VN, Sood DD (1990) J Nucl Mater172:37

    Article  CAS  Google Scholar 

  38. Mukerjee SK, Dehadraya JV, Vaidya VN, Sood DD (1991) J Nucl Mater 185:39

    Article  CAS  Google Scholar 

  39. Wesman AER, Hugill HR (1930) J Am Cer Soc 13:767

    Article  Google Scholar 

  40. Mc Geary RKJ (1961) J Am Cer Soc 44(10):513

    Google Scholar 

  41. Sens JD, Lotts AD, Davis FC (1964) ORNL-3539

  42. Ayer JE, Soppet FE (1965) J Am Cer Soc 48:5180

    Article  Google Scholar 

  43. Cannon DD, Davis FC, Sease JD (1966) Trans Am Nucl Soc 9:614

    Google Scholar 

  44. Davice FC, Pate WA, Sease JD (1966) Trans Am Nucl Soc 9:613

    Google Scholar 

  45. Ayer JE (1970) Symposium on Sol–Gel Process and Reactor Fuel Cycles Conf 700 502 Gatlinburg

  46. Peddicord KL et al (1986) Prog Nucl Energy 18(3):265

    Article  CAS  Google Scholar 

  47. Kumar A, Vittal Rao TV, Mukerjee SK, Vaidya VN (2006) J Nucl Mater 350:254

    Article  CAS  Google Scholar 

  48. Vittal Rao TV, Kumar A, Vaidya VN, Mukerjee SK (2006) J Radioanal Nucl Chem 268(3):549

    Article  Google Scholar 

  49. Morihira M, Nakamura M, Hellwig C, Bakker K, Ozawa T, Bart G, Kihara Y (2005) Global 2005 Conference Tsukuba Japan Paper 109

Download references

Acknowledgements

Author thanks Board of Research in Nuclear Sciences DAE India for providing the necessary support. Author thanks all the members of the Sol–Gel team at BARC (of which he was also a member) namely, Dr. S.K. Mukerjee, Shri R.V. Kamat, Shri S. Suryanarayana, Shri S. Venkateswaran, Shri S.B. Rajure, Shri J.K. Joshi, Shri J. Radhakrishna, Dr. N. Kumar, Dr. J.V. Dehadraya, Dr. K.T. Pillai, Shri Ashok Kumar, Dr. A.C. Deb, Shri Rajesh Pai, Shri V.R. Ganatra, Shri Y.R. Bamankar, Shri T.V. Vittal Rao, Shri L.B. Pable, and Dr. D.D. Sood. Author thanks Dr. V. Venugopal Director RC&I Group BARC and Dr. S.K. Aggarwal Head, FCD BARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Vaidya.

Additional information

Author is BRNS Raja Ramanna Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidya, V.N. Status of sol–gel process for nuclear fuels. J Sol-Gel Sci Technol 46, 369–381 (2008). https://doi.org/10.1007/s10971-008-1725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1725-0

Keywords

Navigation