Skip to main content
Log in

Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models

  • Published:
Journal of Structural and Functional Genomics

Abstract

We propose a novel method of calculation of free energy for coarse grained models of proteins by combining our newly developed multibody potentials with entropies computed from elastic network models of proteins. Multi-body potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Combining four-body non-sequential, four-body sequential and pairwise short range potentials with optimized weights for each term, our coarse-grained potential improved recognition of native structure among misfolded decoys, outperforming all other contact potentials for CASP8 decoy sets and performance comparable to the fully atomic empirical DFIRE potentials. By combing statistical contact potentials with entropies from elastic network models of the same structures we can compute free energy changes and improve coarse-grained modeling of protein structure and dynamics. The consideration of protein flexibility and dynamics should improve protein structure prediction and refinement of computational models. This work is the first to combine coarse-grained multibody potentials with an entropic model that takes into account contributions of the entire structure, investigating native-like decoy selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qu X, Swanson R, Day R, Tsai J (2009) A guide to template based structure prediction. Curr Protein Pept Sci 10:270–285

    Article  PubMed  CAS  Google Scholar 

  2. Kihara D, Chen H, Yang YD (2009) Quality assessment of protein structure models. Curr Protein Pept Sci 10:216–228

    Article  PubMed  CAS  Google Scholar 

  3. Skolnick J, Jaroszewski L, Kolinski A, Godzik A (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci 6:676–688

    Article  PubMed  CAS  Google Scholar 

  4. Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Brief Bioinform 10:378–391

    Article  PubMed  CAS  Google Scholar 

  5. Kryshtafovych A, Fidelis K (2009) Protein structure prediction and model quality assessment. Drug Discov Today 14:386–393

    Article  PubMed  CAS  Google Scholar 

  6. Bellows ML, Floudas CA (2010) Computational methods for de novo protein design and its applications to the human immunodeficiency virus 1, purine nucleoside phosphorylase, ubiquitin specific protease 7, and histone demethylases. Curr Drug Targets 11:264–278

    Article  PubMed  CAS  Google Scholar 

  7. Mandell DJ, Kortemme T (2009) Computer-aided design of functional protein interactions. Nat Chem Biol 5:797–807

    Article  PubMed  CAS  Google Scholar 

  8. Mandell DJ, Kortemme T (2009) Backbone flexibility in computational protein design. Curr Opin Biotechnol 20:420–428

    Article  PubMed  CAS  Google Scholar 

  9. Gerlt JA, Babbitt PC (2009) Enzyme (re)design: lessons from natural evolution and computation. Curr Opin Chem Biol 13:10–18

    Article  PubMed  CAS  Google Scholar 

  10. Vajda S, Kozakov D (2009) Convergence and combination of methods in protein–protein docking. Curr Opin Struct Biol 19:164–170

    Article  PubMed  CAS  Google Scholar 

  11. de Azevedo WF, Dias R (2008) Computational methods for calculation of ligand-binding affinity. Curr Drug Targets 9:1031–1039

    Article  PubMed  Google Scholar 

  12. Vakser IA, Kundrotas P (2008) Predicting 3D structures of protein–protein complexes. Curr Pharm Biotechnol 9:57–66

    Article  PubMed  CAS  Google Scholar 

  13. Ritchie DW (2008) Recent progress and future directions in protein–protein docking. Curr Protein Pept Sci 9:1–15

    Article  PubMed  CAS  Google Scholar 

  14. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127

    Article  PubMed  CAS  Google Scholar 

  15. Roccatano D (2008) Computer simulations study of biomolecules in non-aqueous or cosolvent/water mixture solutions. Curr Protein Pept Sci 9:407–426

    Article  PubMed  CAS  Google Scholar 

  16. Fawzi NL, Yap EH, Okabe Y, Kohlstedt KL, Brown SP, Head-Gordon T (2008) Contrasting disease and nondisease protein aggregation by molecular simulation. Acc Chem Res 41:1037–1047

    Article  PubMed  CAS  Google Scholar 

  17. Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM (2008) Conformational stability and folding mechanisms of dimeric proteins. Prog Biophys Mol Biol 98:61–84

    Article  PubMed  CAS  Google Scholar 

  18. Samudrala R, Moult J (1998) An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Mol Biol 275:895–916

    Article  PubMed  CAS  Google Scholar 

  19. Lu H, Skolnick J (2001) A distance-dependent atomic knowledge-based potential for improved protein structure selection. Proteins 44:223–232

    Article  PubMed  CAS  Google Scholar 

  20. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726

    Article  PubMed  CAS  Google Scholar 

  21. Miyazawa S, Jernigan RL (1986) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552

    Article  Google Scholar 

  22. Miyazawa S, Jernigan RL (1996) Residue—residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    Article  PubMed  CAS  Google Scholar 

  23. Sippl MJ (1990) Calculation of conformational ensembles from potentials of mena force: an approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213:859–883

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka S, Scheraga HA (1976) Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9:945–950

    Article  PubMed  CAS  Google Scholar 

  25. Betancourt M, Thirumalai D (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 8:361–369

    Article  PubMed  CAS  Google Scholar 

  26. Munson P, Singh RK (1997) Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment. Protein Sci 6:1467–1481

    Article  PubMed  CAS  Google Scholar 

  27. Li X, Liang J (2005) Geometric cooperativity and anticooperativity of three-body interactions in native proteins. Proteins 60:46–65

    Article  PubMed  CAS  Google Scholar 

  28. Krishnamoorthy B, Tropsha A (2003) Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations. Bioinformatics 19:1540–1548

    Article  PubMed  CAS  Google Scholar 

  29. Feng Y, Kloczkowski A, Jernigan RL (2007) Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys. Proteins 68:57–66

    Article  PubMed  CAS  Google Scholar 

  30. Feng Y, Kloczkowski A, Jernigan R (2010) Potentials ‘R’Us web-server for protein energy estimations with coarse-grained knowledge-based potentials. BMC Bioinform 11:92–95

    Article  Google Scholar 

  31. Bahar I, Kaplan M, Jernigan RL (1997) Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins 29:292–308

    Article  PubMed  CAS  Google Scholar 

  32. Gniewek P, Leelananda SP, Kolinski A, Jernigan RL, Kloczkowski A (2011) Multibody coarse-grained potentials for native structure recognition and quality assessment of protein models. Proteins 79:1923–1929

    Google Scholar 

  33. Samudrala R, Levitt M (2000) Decoys “R” Us: a database of incorrect conformations to improve protein structure prediction. Protein Sci 9:1399–1401

    Article  PubMed  CAS  Google Scholar 

  34. Gilis D (2004) Protein decoy sets for evaluating energy functions. J Biomol Struct Dyn 21:725–736

    PubMed  CAS  Google Scholar 

  35. Pokarowski P, Kloczkowski A, Jernigan RL, Kothari NS, Pokarowska M, Kolinski A (2005) Inferring ideal amino acid interaction forms from statistical protein contact potentials. Proteins 59:49–57

    Article  PubMed  CAS  Google Scholar 

  36. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural net-works, pp 1942–1948

  37. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  38. Yang LW, Eyal E, Chennubhotla C, Jee J, Gronenborn AM, Bahar I (2007) Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure 15:741–749

    Article  PubMed  Google Scholar 

  39. Yang L, Song G, Carriquiry A, Jernigan RL (2008) Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 16:321–330

    Article  PubMed  CAS  Google Scholar 

  40. Yang LW, Eyal E, Bahar I, Kitao A (2009) Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25:606–614

    Article  PubMed  CAS  Google Scholar 

  41. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  42. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    Article  PubMed  CAS  Google Scholar 

  43. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  PubMed  CAS  Google Scholar 

  44. Tama F, Brooks CL (2006) Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu Rev Biophys Biomol Struct 35:115–133

    Article  PubMed  CAS  Google Scholar 

  45. Jernigan RL, Kloczkowski A (2007) Packing regularities in biological structures relate to their dynamics. Methods Mol Biol 350:251–276

    PubMed  CAS  Google Scholar 

  46. Dubois PF, Greenbaum A, Rodrigue GH (1979) Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22:257–268

    Article  Google Scholar 

  47. Qiang E, Rader AJ, Chennubhotla C, Yang LW, Bahar I (2006) The Gaussian network model: theory and applications in normal mode analysis. Theory and applications to biological and chemical systems. Chapman & Hall, pp 41–64

  48. Sen TZ, Feng Y, Garcia JV, Kloczkowski A, Jernigan RL (2006) The extent of cooperativity of protein motions observed with elastic network models is similar for atomic and coarser-grained models. J Chem Theory Comput 2:696–704

    Article  PubMed  CAS  Google Scholar 

  49. Gerstein M, Krebs W (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290

    Article  PubMed  CAS  Google Scholar 

  50. Mirzaie M, Eslahchi C, Pezeshk H, Sadeghi M (2009) A distance-dependent atomic knowledge-based potential and force for discrimination of native structures from decoys. Proteins 77:454–463

    Article  PubMed  CAS  Google Scholar 

  51. Brooks BR, Janezic D, Karplus M (1995) Harmonic-analysis of large systems. 1. Methodology. J Comput Chem 16:1522–1542

    Article  CAS  Google Scholar 

  52. Lu MY, Ma JP (2011) Normal mode analysis with molecular geometry restraints: bridging molecular mechanics and elastic models. Arch Biochem Biophys 508:64–71

    Article  PubMed  CAS  Google Scholar 

  53. Carugo O, Pongor S (2001) A normalized root mean square distance for comparing protein three dimensional structures. Protein Sci 10:1470–1473

    Article  PubMed  CAS  Google Scholar 

  54. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J. Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from NIH Grants R01GM072014, R01GM073095, R01GM081680 and R01GM081680-S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski.

Additional information

Michael T. Zimmermann and Sumudu P. Leelananda contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M.T., Leelananda, S.P., Gniewek, P. et al. Free energies for coarse-grained proteins by integrating multibody statistical contact potentials with entropies from elastic network models. J Struct Funct Genomics 12, 137–147 (2011). https://doi.org/10.1007/s10969-011-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-011-9113-3

Keywords

Navigation