Skip to main content

Advertisement

Log in

Backbone solution structures of proteins using residual dipolar couplings: application to a novel structural genomics target

  • Published:
Journal of Structural and Functional Genomics

Abstract

Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c12E5:

pentaethylene glycol monododecyl ether

CTAB:

hexadecyltrimethylammonium bromide

DSS:

2,2-dimethyl-2-silapentane-5-sulfonic acid

DTT:

dithiothreitol

RDC:

residual dipolar coupling

References

  1. G.T. Montelione D.Y. Zheng Y.P.J. Huang K.C. Gunsalus T. Szyperski (2000) Nat. Struct. Biol. 7 982–985

    Google Scholar 

  2. F. Tian H. Valafar J.H. Prestegard (2001) J. Am. Chem. Soc. 123 11791–11796

    Google Scholar 

  3. C.A. Orengo A.E. Todd J.M. Thornton (1999) Curr. Opin. Struct. Biol. 9 374–382

    Google Scholar 

  4. A. Sali J. Kuriyan (1999) Trends Biochem. Sci. 24 M20–M24

    Google Scholar 

  5. L. Holm C. Sander (1991) J. Mol. Biol. 218 183–194

    Google Scholar 

  6. C. Lee S. Subbiah (1991) J. Mol. Biol. 217 373–388

    Google Scholar 

  7. M.W.W. Adams H.A. Dailey L.J. Delucas M. Luo J.H. Prestegard J.P. Rose B.C. Wang (2003) Acc. Chem. Res. 36 191–198

    Google Scholar 

  8. L.C. Morris H. Valafar J.H. Prestegard (2004) J. Biomol. NMR 29 1–9

    Google Scholar 

  9. C.D. Schwieters J.J. Kuszewski N. Tjandra G.M. Clore (2003) J. Magn. Reson. 160 65–73

    Google Scholar 

  10. H.M. Berman J. Westbrook Z. Feng G. Gilliland T.N. Bhat H. Weissig I.N. Shindyalov P.E. Bourne (2000) Nucleic Acids Res. 28 235–242 Occurrence Handle10.1093/nar/28.1.235

    Article  Google Scholar 

  11. J.R. Tolman J.M. Flanagan M.A. Kennedy J.H. Prestegard (1995) Proc. Natl. Acad. Sci. USA 92 9279–9283

    Google Scholar 

  12. N. Tjandra A. Bax (1997) Science 278 1111–1114

    Google Scholar 

  13. G. Cornilescu F. Delaglio A. Bax (1999) J. Biomol. NMR 13 289–302 Occurrence Handle10.1023/A:1008392405740

    Article  Google Scholar 

  14. C.A. Fowler F. Tian H.M. Al-Hashimi J.H. Prestegard (2000) J. Mol. Biol. 304 447–460

    Google Scholar 

  15. M. Andrec P.C. Du R.M. Levy (2001) J. Biomol. NMR 21 335–347

    Google Scholar 

  16. J.H. Prestegard H.M. Al-Hashimi J.R. Tolman (2000) Quart. Rev. Biophys. 33 371–424

    Google Scholar 

  17. A. Bax G. Kontaxis N. Tjandra (2001) ArticleTitleDipolar couplings in macromolecular structure determination, In Nuclear Magnetic Resonance of Biological Macromolecules, Pt B Methods in Enzymology 339 127–174

    Google Scholar 

  18. J.H. Prestegard A.I. Kishore (2001) ArticleTitleCurr Opin. Struct. Biol. 5 584–590

    Google Scholar 

  19. J. Sambrook D. Russell (2000) Molecular Cloning A Laboratory Manual EditionNumber3 Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  20. R. Weisemann H. Ruterjans H. Schwalbe J. Schleucher W. Bermel C. Griesinger (1994) J. Biomol. NMR 4 231–240

    Google Scholar 

  21. F. Delaglio S. Grzesiek G.W. Vuister G. Zhu J. Pfeifer A. Bax (1995) J.Biomol. NMR 6 277–293

    Google Scholar 

  22. S.J. Varner R.L. Vold G.L. Hoatson (1996) J. Magn. Reson. Ser. A 123 72–80

    Google Scholar 

  23. G.M. Clore A.M. Gronenborn A. Bax (1998) J. Magn. Reson. 133 216–221

    Google Scholar 

  24. H. Valafar J.H. Prestegard (2004) J. Magn. Reson. 167 228–241

    Google Scholar 

  25. C.C. Huang G.S. Couch E.F. Pettersen T.E. Ferrin (1996) Pacific Symp Biocomput. 1 724

    Google Scholar 

  26. R. Koradi M. Billeter K. Wüthrich (1996) J.Mol. Graphics 14 51–55

    Google Scholar 

  27. H.M. Al-Hashimi H. Valafar M. Terrell E.R. Zartler M.K. Eidsness J.H. Prestegard (2000) J.Magn. Reson. 143 402–406

    Google Scholar 

  28. F.M.G. Pearl D. Lee J.E. Bray I. Sillitoe A.E. Todd A.P. Harrison J.M. Thornton C.A. Orengo (2000) Nucleic Acids Res 28 277–282

    Google Scholar 

  29. D.T. Jones (1999) J. Mol. Biol. 287 797–815

    Google Scholar 

  30. Y. Xu D. Xu O.H. Crawford J.R. Einstein F. Larimer E. Uberbacher M.A. Unseren G. Zhang (1999) Protein Eng 12 899–907

    Google Scholar 

  31. A. Sali T.L. Blundell (1993) J.Mol. Biol. 234 779–815

    Google Scholar 

  32. A. Bax (2003) Protein Sci 12 1–16

    Google Scholar 

  33. S.D. Liang N.V. Grishin (2002) Protein Sci 11 322–331

    Google Scholar 

  34. J. Mendes A.M. Baptista M.A. Carrondo C.M. Soares (1999) Proteins. Struct. Funct. Genet. 37 530–543

    Google Scholar 

  35. L.L. Looger H.W. Hellinga (2001) J.Mol. Biol. 307 429–445

    Google Scholar 

  36. L. Holm C. Sander (1995) Trends Biochem Sci. 20 478–480

    Google Scholar 

  37. S.F. Altschul T.L. Madden A.A. Schaffer J.H. Zhang Z. Zhang W. Miller D.J. Lipman (1997) Nucleic Acids Res 25 3389–3402 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    CAS  PubMed  Google Scholar 

  38. F. Servant C. Bru S. Carrere E. Courcelle J. Gouzy D. Peyruc D. Kahn (2002) Brief Bioinform 3 246–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Prestegard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valafar, H., Mayer, K.L., Bougault, C.M. et al. Backbone solution structures of proteins using residual dipolar couplings: application to a novel structural genomics target. J Struct Funct Genomics 5, 241–254 (2004). https://doi.org/10.1007/s10969-004-4899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-004-4899-x

Keywords

Navigation