Skip to main content
Log in

Protective effect of melatonin and carnosine against radiation induced kidney injury

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We designed this study to determine possible protective roles of melatonin and carnosine on radiation. Wistar albino rats were divided to five groups. Melatonin, carnosine and combinated version were injected to Group III, IV and V every 48 h in a week. Group II, III, IV and V were exposed to 8 Gy gamma radiation dose arranged for whole-body one hour later second injection. Degenerative and biochemical changes were determined in radiation group as compared to control group. Administration of melatonin, carnosine and their combination ameliorated these parameters. We can conclude melatonin, carnosine and their combination protect kidney against radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article.

References

  1. Shao L, Yang W, Xu R, Zhu S, Huang Y, Li H, Wu X, Yue M, Xiong X, Chen X, Kuang B, Fan G, Zhu Q, Zeng H (2018) Inhibition of mTORC1 signaling protects kidney from irradiation-induced toxicity via accelerating recovery of renal stem-like cells. Stem Cell Res Ther 9:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karabulut-Bulan O, Us H, Bayrak BB, Sezen-Us A, Yanardag R (2017) The role of melatonin and carnosine in prevention of oxidative intestinal injury induced by gamma irradiation in rats. Biologia 72:935–945

    Article  CAS  Google Scholar 

  3. Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, Pan C, Ten Haken RK, Schultheiss TE (2010) Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys 76:S108–S115

    Article  PubMed  Google Scholar 

  4. Seidensticker M, Burak M, Kalinski T, Garlipp B, Koelble K, Wust P, Antweiler K, Seidensticker R, Mohnike K, Pech M, Ricke J (2015) Radiation-induced liver damage: correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study. Cardiovasc Intervent Radiol 38:213–221

    Article  PubMed  Google Scholar 

  5. Bouillet T, Ali AM, Thariat J (2012) Radiation-induced nephropathy. Bull Cancer 99:389–396

    Article  PubMed  Google Scholar 

  6. Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61:77–84

    Article  CAS  PubMed  Google Scholar 

  7. Boldyrev A, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845

    Article  CAS  PubMed  Google Scholar 

  8. Rahman A, Hasan AU, Kobori H (2019) Melatonin in chronic kidney disease: a promising chronotherapy targeting the intrarenal renin-angiotensin system. Hypertens Res 42:920–923

    Article  PubMed  Google Scholar 

  9. Chen L, Han Z, Shi Z, Liu C, Lu Q (2021) Melatonin alleviates renal injury in mouse model of sepsis. Front Pharmacol 12:697643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dun RL, Lan TY, Tsai J, Mao JM, Shao YQ, Hu XH, Zhu WJ, Qi GC, Peng Y (2022) Protective effect of melatonin for renal ischemia-reperfusion injury: a systematic review and meta-analysis. Front Physiol 12:791036

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Suo M, Liu L, Qi Y, Zhang C, Xie L, Zheng X, Ma C, Li J, Yang J, Bu P (2021) Melatonin alleviates contrast-induced acute kidney injury by activation of Sirt3. Oxid Med Cell Longev. https://doi.org/10.1155/2021/6668887

  12. Raza Z, Naureen Z (2020) Melatonin ameliorates the drug induced nephrotoxicity: molecular insights. Nefrologia (Engl Ed) 40:12–25

    Article  Google Scholar 

  13. Hong TS, Briscese K, Yuan M, Deshpande K, Aleksunes LM, Brunetti L (2021) Renoprotective effects of melatonin against vancomycin-related acute kidney injury in hospitalized patients: a retrospective cohort study. Antimicrob Agents Chemother 65:e0046221

    Article  PubMed  Google Scholar 

  14. Ozdemir O, Okumus NO, Gursel B, Meydan AD, Meydan BC, Yapici O, Yilmaz Rakici S (2022) The effect of melatonin and carnitine on radiation nephropathy.J Radiat Cancer Res. https://www.journalrcr.org/temp/JRadiatCancerRes000-4490483_122824.pdf

  15. Kilis-Pstrusinska K (2020) Carnosine and kidney diseases: what we currently know? Curr Med Chem 27:1764–1781

    Article  CAS  PubMed  Google Scholar 

  16. Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, Rychlik I, Cerna M, Romzova M, de Heer E, Baelde H, Bakker SJ, Zirie M, Rondeau E, Mathieson P, Saleem MA, Meyer J, Köppel H, Sauerhoefer S, Bartram CR, Nawroth P, Hammes HP, Yard BA, Zschocke J, van der Woude FJ (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54:2320–2327

    Article  CAS  PubMed  Google Scholar 

  17. Kurata H, Fujii T, Tsutsui H, Katayama T, Ohkita M, Takaoka M, Tsuruoka N, Kiso Y, Ohno Y, Fujisawa Y, Shokoji T, Nishiyama A, Abe Y, Matsumura Y (2006) Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats. J Pharmacol Exp Ther 319:640–647

    Article  CAS  PubMed  Google Scholar 

  18. Fernández M, Medina A, Santos F, Carbajo E, Rodríguez J, Álvarez J, Cobo A (2001) Exacerbated inflammatory response induced by insulin-like growth factor-I treatment in rats with ischemic acute renal failure. J Am Soc Nephrol 12:1900–1907

    Article  PubMed  Google Scholar 

  19. Barker SB (1944) The direct colorimetric determination of urea in blood and urine. J Biol Chem 152:453–463

    Article  CAS  Google Scholar 

  20. Bonsnes RW, Taussky HH (1945) On the colorimetric determination of creatinine by the Jaffe reaction. J Biol Chem 158:581–591

    Article  CAS  Google Scholar 

  21. Beutler E (1975) Glutathione in red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York

    Google Scholar 

  22. Ledwozyw A, Michalak J, Stepień A, Kadziołka A (1986) The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 155:275–283

    Article  CAS  PubMed  Google Scholar 

  23. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Method Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-H

  24. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  25. Mylroie AA, Collins H, Umbles C, Kyle J (1986) Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol 82:512–520

    Article  CAS  PubMed  Google Scholar 

  26. Wendel A (1981) Glutathione peroxidase. Method Enzymol 77:325–333

    Article  CAS  Google Scholar 

  27. Habig WH, Jakoby WB (1981) Assays of differentiation of glutathione S-transferases. Method Enzymol 77:398–405

    Article  CAS  Google Scholar 

  28. Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Geyer JW, Dabich D (1971) Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem 39:412–417

    Article  CAS  PubMed  Google Scholar 

  30. Karker H (1964) Method for estimation of serum adenosine deaminase. Scand J Clin Lab Invest 16:570–574

    Article  CAS  PubMed  Google Scholar 

  31. Ridderstap AS, Bonting SL (1969) Na+-K+-activated ATPase and exocrine pancreatic secretion in vitro. Am J Physiol 217:1721–1727

    Article  CAS  PubMed  Google Scholar 

  32. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  33. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Chen J, Ji H, Xiao ZG, Shen P, Xu LH (2018) Protective effects of Danshen injection against erectile dysfunction via suppression of endoplasmic reticulum stress activation in a streptozotocin-induced diabetic rat model. BMC Complement Altern Med 18:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei H, Frenkel K (1991) In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin. Cancer Res 51:4443–4449

    CAS  PubMed  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall J (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  37. Kucuktulu E (2012) Protective effect of melatonin against radiation induced nephrotoxicity in rats. Asian Pac J Cancer Prev 13:4101–4105

    Article  PubMed  Google Scholar 

  38. Canyilmaz E, Uslu GH, Bahat Z, Kandaz M, Mungan S, Haciislamoglu E, Mentese A, Yoney A (2016) Comparison of the effects of melatonin and genistein on radiation-induced nephrotoxicity: Results of an experimental study. Biomed Rep 4:45–50

    Article  PubMed  Google Scholar 

  39. Mehrvar S, la Cour MF, Medhora M, Camara AKS, Ranji M (2019) Optical metabolic imaging for assessment of radiation-induced injury to rat kidney and mitigation by lisinopril. Ann Biomed Eng 47:1564–1574

    Article  PubMed  Google Scholar 

  40. Aratani S, Tagawa M, Nagasaka S, Sakai Y, Shimizu A, Tsuruoka S (2018) Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep 8:16812

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abdel-Magied N, Elkady AA (2019) Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 111:104299

    Article  CAS  PubMed  Google Scholar 

  42. Haeri SA, Rajabi H, Fazelipour S, Hosseinimehr SJ (2014) Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice. Andrologia 46:1041–1046

    Article  CAS  PubMed  Google Scholar 

  43. Kunwar A, Bag PP, Chattopadhyay S, Jain VK, Priyadarsini KI (2011) Anti-apoptotic, anti-inflammatory, and immunomodulatory activities of 3,3’-diselenodipropionic acid in mice exposed to whole body γ-radiation. Arch Toxicol 85:1395–1405

    Article  CAS  PubMed  Google Scholar 

  44. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336

    Article  PubMed  Google Scholar 

  45. Sert C, Çelik MS (1996) Radyasyondan koruyucu ajanlar. Turkiye Klinikleri J Med Sci 16:292–298

    Google Scholar 

  46. Somosy Z, Horváth G, Telbisz Á, Réz G, Pálfia Z (2002) Morphological aspects of ionizing radiation response of small intestine. Micron 33:167–178

    Article  CAS  PubMed  Google Scholar 

  47. Baykara B, Tekmen I, Pekcetin C, Ulukus C, Tuncel P, Sagol O, Ormen M, Ozogul C (2009) The protective effects of carnosine and melatonin in ischemia-reperfusion injury in the rat liver. Acta Histochem 111:42–51

    Article  CAS  PubMed  Google Scholar 

  48. Marzook EA, Marzook FA, Abd El Moneim AE (2020) Radioprotective and anti-diabetic effects of Costus speciosus and carnosine. Trop J Pharm Res 19:121–127

    Article  CAS  Google Scholar 

  49. Aziz MM, Eid NI, Nada AS, Amin NE, Ain-Shoka AA (2018) Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environ Sci Pollut Res Int 25:9060–9070

    Article  CAS  PubMed  Google Scholar 

  50. Fouad D, Alhatem H, Abdel-Gaber R, Ataya F (2019) Hepatotoxicity and renal toxicity induced by gamma-radiation and the modulatory protective effect of Ficus carica in male albino rats. Res Vet Sci 125:24–35

    Article  CAS  PubMed  Google Scholar 

  51. Altintas R, Polat A, Parlakpinar H, Vardi N, Beytur A, Oguz F, Sagir M, Yildiz A, Duran ZR (2014) The effect of melatonin on acetylsalicylic acid-induced kidney and testis damage. Hum Exp Toxicol 33:383–395

    Article  CAS  PubMed  Google Scholar 

  52. Hipkiss AR, Brownson C, Bertani MF, Ruiz E, Ferro A (2002) Reaction of carnosine with aged proteins: another protective process? Ann N Y Acad Sci 959:285–294

    Article  CAS  PubMed  Google Scholar 

  53. Ezz MK, Ibrahim NK, Said MM, Farrag MA (2018) The beneficial radioprotective effect of tomato seed oil against gamma radiation-induced damage in male rats. J Diet Suppl 15:923–938

    Article  CAS  PubMed  Google Scholar 

  54. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74:3863–3881

    Article  CAS  PubMed  Google Scholar 

  55. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions.Molecules 23:509

  56. Hoffman JR, Varanoske A, Stout JR (2018) Effects of β-alanine supplementation on carnosine elevation and physiological performance. Adv Food Nutr Res 84:183–206

    Article  CAS  PubMed  Google Scholar 

  57. Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16:130–143

    Article  CAS  PubMed  Google Scholar 

  58. Sauerhöfer S, Yuan G, Braun GS, Deinzer M, Neumaier M, Gretz N, Floege J, Kriz W, van der Woude F, Moeller MJ (2007) L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56:2425–2432

    Article  PubMed  Google Scholar 

  59. Scheuer C, Pommergaard HC, Rosenberg J, Gögenur I (2014) Melatonin’s protective effect against UV radiation: a systematic review of clinical and experimental studies. Photodermatol Photoimmunol Photomed 30:180–188

    Article  CAS  PubMed  Google Scholar 

  60. Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H, Reiter RJ (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30:65–74

    Article  PubMed  Google Scholar 

  61. Antolín I, Rodríguez C, Saínz RM, Mayo JC, Uría H, Kotler ML, Rodríguez-Colunga MJ, Tolivia D, Menéndez-Peláez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890

    Article  PubMed  Google Scholar 

  62. Serhatlioglu S, Gursu MF, Gulcu F, Canatan H, Godekmerdan A (2003) Levels of paraoxonase and arylesterase activities and malondialdehyde in workers exposed to ionizing radiation. Cell Biochem Funct 21:371–375

    Article  CAS  PubMed  Google Scholar 

  63. Efe TH, Ertem AG, Altunoglu A, Koseoglu C, Erayman A, Bilgin M, Kurmuş Ö, Aslan T, Bilge M (2016) Serum paraoxonase levels are correlated with impaired aortic functions in patients with chronic kidney disease. Acta Cardiol Sin 32:75–80

    PubMed  PubMed Central  Google Scholar 

  64. Cruz FF, Pereira TCB, Altenhofen S, da Costa KM, Bogo MR, Bonan CD, Morrone FB (2019) Characterization of the adenosinergic system in a zebrafish embryo radiotherapy model. Comp Biochem Physiol C Toxicol Pharmacol 224:108572

    Article  CAS  PubMed  Google Scholar 

  65. Alkis H, Demir E, Taysi MR, Sagir S, Taysi S (2021) Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed Pharmacother 139:111540

    Article  CAS  PubMed  Google Scholar 

  66. Shadyro OI, Yurkova IL, Kisel MA (2002) Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol 78:211–217

    Article  CAS  PubMed  Google Scholar 

  67. Tain YL, Chen CC, Lee CT, Kao YH, Sheen JM, Yu HR, Huang LT (2013) Melatonin regulates L-arginine transport and NADPH oxidase in young rats with bile duct ligation: role of protein kinase C. Pediatr Res 73:395–401

    Article  CAS  PubMed  Google Scholar 

  68. Kaločayová B, Kovačičová I, Radošinská J, Tóthová Ľ, Jagmaševič-Mézešová L, Fülöp M, Slezák J, Babál P, Janega P, Vrbjar N (2019) Alteration of renal Na,K-ATPase in rats following the mediastinal γ-irradiation. Physiol Rep 7:e13969

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gariballa SE, Sinclair AJ (2000) Carnosine: physiological properties and therapeutic potential. Age Ageing 29:207–210

    Article  CAS  PubMed  Google Scholar 

  70. García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal-Pérez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    Article  PubMed  Google Scholar 

  71. Yay A, Akkuş D, Yapıslar H, Balcıoglu E, Sonmez MF, Ozdamar S (2014) Antioxidant effect of carnosine treatment on renal oxidative stress in streptozotocin-induced diabetic rats. Biotech Histochem 89:552–557

    Article  CAS  PubMed  Google Scholar 

  72. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  73. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  CAS  PubMed  Google Scholar 

  74. Sener G, Kabasakal L, Atasoy BM, Erzik C, Velioğlu-Oğünç A, Cetinel S, Gedik N, Yeğen BC (2006) Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats. Pharmacol Res 53:241–252

    Article  CAS  PubMed  Google Scholar 

  75. Galijasevic S, Abdulhamid I, Abu-Soud HM (2008) Melatonin is a potent inhibitor for myeloperoxidase. Biochemistry 47:2668–2677

    Article  CAS  PubMed  Google Scholar 

  76. Carroll L, Karton A, Radom L, Davies MJ, Pattison DI (2019) Carnosine and carcinine derivatives rapidly react with hypochlorous acid to form chloramines and dichloramines. Chem Res Toxicol 32:513–525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Istanbul University. Project Number: 57797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismet Burcu Turkyilmaz.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to this research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmaz, I.B., Us, H., Sezen Us, A. et al. Protective effect of melatonin and carnosine against radiation induced kidney injury. J Radioanal Nucl Chem 331, 3551–3561 (2022). https://doi.org/10.1007/s10967-022-08419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08419-6

Keywords

Navigation