Skip to main content
Log in

Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption performance and mechanism of the amino-modified zirconium-based metal organic framework (UiO-66-NH2) for the removal of U(VI) in aqueous solution were studied. Compared with UiO-66, UiO-66-NH2 shows better adsorption performance due to the introduction of amino groups. The adsorption characteristics of factors such as pH, UiO-66-NH2 dosage and contact time were investigated. The results show that the maximum adsorption capacity is 384.6 mg g−1 at pH = 6 and T = 313 K. The adsorption conforms to the quasi-second-order kinetic model and the Langmuir isotherm model. The thermodynamic parameters indicate that the adsorption process of U(VI) is endothermic and spontaneous. After five cycles, the removal rate of U(VI) still exceeded 83.53%. The results indicate that UiO-66-NH2 is a promising adsorbent that can effectively remove U(VI) in radioactive wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li L, Xu M, Chubik M, Chubik M, Gromov A, Wei G, Wei H (2015) Entrapment of radioactive uranium from wastewater by using fungus-Fe3O4 bio-nanocomposites. RSC Adv 5:41611–41616

    CAS  Google Scholar 

  2. Hoehr C, Bénard F, Buckley K, Crawford J, Gottberg A, Hanemaayer V, Kunz P, Ladouceur K, Radchenko V, Ramogida C (2017) Medical isotope production at TRIUMF—from imaging to treatment. Phys Proc 90:200–208

    CAS  Google Scholar 

  3. Lin W, Chen L, He J, Hao M, Shi Z (2015) Review on monitoring marine radioactivity since the Fukushima Nuclear Accident. China Environ Sci 35(1):269–276

    Google Scholar 

  4. Ho SS, Oshita T, Looi J, Leong AD, Chuah A (2019) Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: a qualitative approach. Energy Policy 127:259–268

    Google Scholar 

  5. Tian Y, Liu L, Ma F, Zhu X, Zhao F (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538

    CAS  PubMed  Google Scholar 

  6. Wei D, Chen Z, Jin J, Wei B, Li Q, Yang S, Yu Z, Alsaedi A, Hayat T, Wang X (2018) Interaction of U(VI) with amine-modified peanut shell studied by macroscopic and microscopic spectroscopy analysis. J Clean Prod 195:497–506

    CAS  Google Scholar 

  7. Zahakifar F, Keshtkar AR, Talebi M (2021) Synthesis of sodium alginate (SA)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium(VI) adsorption from aqueous solutions. Prog Nucl Energ 134:103642. https://doi.org/10.1016/j.pnucene.2021.103642

    Article  CAS  Google Scholar 

  8. Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4(1):41–48

    Google Scholar 

  9. Feng M, Sarma D, Qi X, Du K, Huang X, Kanatzidis M (2016) Efficient removal and recovery of uranium by a layered organic–inorganic hybrid thiostannate. J Am Chem Soc 138:12578–12585

    CAS  PubMed  Google Scholar 

  10. Beltrami D, Cote G, Mokhtari H, Courtaud B, Moyer BA, Chagnest A (2014) Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem Rev 114(24):12002–12023. https://doi.org/10.1021/cr5001546

    Article  CAS  PubMed  Google Scholar 

  11. Schulte-Herbrüggen HMA, Semio AJC, Chaurand P, Graham MC (2016) Effect of pH and pressure on uranium removal from drinking water using NF/RO membranes. Environ Sci Technol 50(11):5817–5824

    PubMed  Google Scholar 

  12. Ke L, Li PF, Wu X, Jiang SJ, Luo MB, Liu YH, Le ZG, Sun CZ, Song SQ (2017) Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl Catal B-Environ 205:319–326. https://doi.org/10.1016/j.apcatb.2016.12.043

    Article  CAS  Google Scholar 

  13. Wang FH, Liu Q, Li RM, Li ZS, Zhang HS, Liu LH, Wang J (2016) Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloid Surface A 490:215–221. https://doi.org/10.1016/j.colsurfa.2015.11.045

    Article  CAS  Google Scholar 

  14. Ding C, Cheng W, Sun Y, Wang X (2015) Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. J Hazard Mater 295:127–137

    CAS  PubMed  Google Scholar 

  15. Sun Y, Zhang R, Ding C, Wang X, Cheng W, Chen C, Wang X (2016) Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65

    CAS  Google Scholar 

  16. Kumar P, Bansal V, Kim KH, Kwon EE (2018) Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment. J Ind Eng Chem 62:130–145

    CAS  Google Scholar 

  17. Vakili R, Xu S, Al-Janabi N, Gorgojo P, Holmes SM, Fan X (2017) Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): optimization and gas adsorption. Microp Mesop Mater 260:45–53

    Google Scholar 

  18. Li L, Ma W, Shen S, Huang H, Bai Y, Liu H (2016) A combined experimental and theoretical study on the extraction of uranium by amino-derived metal–organic frameworks through post-synthetic strategy. ACS Appl Mater Interfaces 8:31032

    CAS  PubMed  Google Scholar 

  19. Liu X, Xie S, Wang G, Huang X, Duan Y, Liu H (2020) Fabrication of environmentally sensitive amidoxime hydrogel for extraction of uranium(VI) from an aqueous solution. Colloids Surf A Physicochem Eng Aspects 611:125813

    Google Scholar 

  20. Qi S, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30(20):1705479

    Google Scholar 

  21. Liu JM, Liu T, Wang CC, Yin XH, Xiong ZH (2017) Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53(Al)-AO for enhanced U(VI) sorption. J Mol Liq 242:531–536

    CAS  Google Scholar 

  22. Feng Y, Ma B, Guo X, Sun H, Zhang Y, Gong H (2019) Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319(1):437–446

    CAS  Google Scholar 

  23. Zhang J, Zhang H, Liu Q, Song D, Wang J (2019) Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chem Eng J 368:951–958

    CAS  Google Scholar 

  24. Edebali S, Pehlivan E (2016) Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol Int J Sci Technol Wet Dry Particul Syst 301:520–525

    CAS  Google Scholar 

  25. He X, Min X, Luo X (2017) Efficient removal of antimony (III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study. J Chem Eng Data 62(4):1519–1529

    CAS  Google Scholar 

  26. Wu S, Ge Y, Wang Y, Chen X, Li F (2018) Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water. Environ Technol 39(15):1937–1948

    CAS  PubMed  Google Scholar 

  27. Wei J, Zhang W, Pan W, Li C, Sun W (2018) Experimental and theoretical investigations on Se(iv) and Se(vi) adsorption to UiO-66-based metal-organic frameworks. Environ Sci Nano 5(6):1441–1453

    CAS  Google Scholar 

  28. Ke W, Gu J, Na Y (2017) Efficient removal of Pb (II) and Cd (II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind Eng Chem Res 56(7):1880–1887

    Google Scholar 

  29. Prabhu SM, Chuaicham C, Park CM, Jeon BH, Sasaki K (2021) Synthesis and characterization of defective UiO-66 for efficient co-immobilization of arsenate and fluoride from single/binary solutions. Environ Pollut 278:116841. https://doi.org/10.1016/j.envpol.2021.116841

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Xie S, Wang G, Yu CW, Liu Y (2020) Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium(VI) from aqueous solution. Environ Sci Pollut Res 27(16):1–13

    Google Scholar 

  31. Lemaire PC, Lee DT, Zhao J, Parsons GN (2017) Reversible low-temperature metal node distortion during atomic layer deposition of Al2O3 and TiO2 on UiO-66-NH2 metal organic framework crystal surfaces. ACS Appl Mater Interfaces 9(26):22042–22054

    CAS  PubMed  Google Scholar 

  32. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P (2011) Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem Eur J 17(24):6643–6651

    CAS  PubMed  Google Scholar 

  33. Liu R, Meng S, Ma Y, Niu L, He S, Xu X, Su B, Lu D, Yang Z, Lei Z (2019) Atmospherical oxidative coupling of amines by UiO-66-NH2 photocatalysis under milder reaction conditions. Catal Commun 124:108–112

    CAS  Google Scholar 

  34. Carboni M, Abney CW, Liu S, Lin W (2013) Highly porous and stable metal–organic frameworks for uranium extraction. Chem Sci 4(6):2396–2402

    CAS  Google Scholar 

  35. Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639

    CAS  Google Scholar 

  36. Liu H, Zhou Y, Yang Y, Zou K, Wu R, Xia K, Xie S (2019) Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution. Appl Surf Sci 471:88–95

    CAS  Google Scholar 

  37. Rostamian R, Firouzzare M, Zahakifar F (2021) Preparation and evaluation of amidoximated poly(styrene-acrylonitrile) nanofibers for uranium adsorption from aqueous solutions. J Polym Res 28(5):1–8

    Google Scholar 

  38. Gorgulho HF, Goncalves F, Pereira M, Figueiredo JL (2009) Synthesis and characterization of nitrogen-doped carbon xerogels. Carbon 47(8):2032–2039

    CAS  Google Scholar 

  39. Xu RH, Cui WR, Zhang CR, Chen XR, Jiang W, Liang RP, Qiu JD (2021) Vinylene-linked covalent organic frameworks with enhanced uranium adsorption through three synergistic mechanisms. Chem Eng J 419:129550. https://doi.org/10.1016/j.cej.2021.129550

    Article  CAS  Google Scholar 

  40. Zhao Y, Zhu L, Li W, Liu J, Huang K (2019) Insights into enhanced adsorptive removal of Rhodamine B by different chemically modified garlic peels: comparison, kinetics, isotherms, thermodynamics and mechanism. J Mol Liq 293:111516

    CAS  Google Scholar 

  41. Liu S, Luo M, Li J, Luo F, Ke L, Ma J (2016) Adsorption equilibrium and kinetics of uranium onto porous azo-metal–organic frameworks. J Radioanal Nucl Chem 310(1):353–362

    CAS  Google Scholar 

  42. Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu YH, Wang H, Hayat T, Wang XK (2016) Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain Chem Eng 5(1):1173–1185

    Google Scholar 

  43. Zahakifar F, Keshtkar AR, Talebi M (2021) Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV). J Radioanal Nuclear Chem 327(1):65–72. https://doi.org/10.1007/s10967-020-07479-w

    Article  CAS  Google Scholar 

  44. Rui H, Jiang XC, Twa B, Gc C, Lin C, Xta B (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    Google Scholar 

  45. Alamdarlo FV, Solookinejad G, Zahakifar F, Jalal MR, Jabbari M (2021) Study of kinetic, thermodynamic, and isotherm of Sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl)phosphonic acid-graphene oxide (AMPA-GO). J Radioanal Nuclear Chem 329(2):1033–1043. https://doi.org/10.1007/s10967-021-07845-2

    Article  CAS  Google Scholar 

  46. Zhu MX, Liu LJ, Feng J, Dong HX, Zhang CH, Ma FQ, Wang Q (2021) Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liq 328:115304. https://doi.org/10.1016/j.molliq.2021.115304

    Article  CAS  Google Scholar 

  47. Huang A, Wan L, Caro J (2018) Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Mater Res Bull 98:308–313

    CAS  Google Scholar 

  48. Chen C, Chen D, Xie S, Quan H, Luo X, Guo L (2017) Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: analysis of surface interactions. ACS Appl Mater Interfaces 9(46):41043–41054

    CAS  PubMed  Google Scholar 

  49. Ayral A, Assih T, Abenoza M (1990) Zirconia by the gel route. J Mater Sci 25(2):1268–1274

    CAS  Google Scholar 

  50. Peterson GW, Mahle JJ, Decoste JB, Gordon WO, Rossin JA (2016) Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem 128(21):6235–6238

    Google Scholar 

  51. Duan S, Xu X, Xia L, Wang Y, Li J (2018) Highly enhanced adsorption performance of U(VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. J Colloid Interface 513:92–103

    CAS  Google Scholar 

  52. Guo DA, Song XC, Zhang LA, Chen WA, Chu DA, Tan L (2020) Recovery of uranium (VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels. J Taiwan Inst Chem Eng 106:198–205

    CAS  Google Scholar 

  53. Min X, Wu X, Shao P, Ren Z, Ding L, Luo X (2019) Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number. Chem Eng J 358:321–330

    CAS  Google Scholar 

  54. Li X, Ding C, Liao J, Liang D, Sun Q, Yang J, Yang Y (2016) Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J Environ Sci 41(3):162–171

    CAS  Google Scholar 

  55. Black L, Garbev K, Stemmermann P, Hallam KR, Allen GC (2004) X-ray photoelectron study of oxygen bonding in crystalline C-S–H phases. Phys Chem Miner 31(6):337–346

    CAS  Google Scholar 

  56. Fan C, Ma H, Li H, Wang J, Wang H (2012) FTIR and XPS analysis of characteristics of synthesized zeolite and removal mechanisms for Cr(III). Spectrosc Spectr Anal 32(2):324–329

    CAS  Google Scholar 

  57. Zhao X, Zheng M, Gao X, Zhang J, Wang E, Gao Z (2021) The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev 440:213970

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11475080, 51904155), the Education Department Fund of Hunan Province of China (19C1588) and the Natural Science Foundation of Hunan Province (2020JJ5492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationshi ps that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Jin, Y., Hu, Z. et al. Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66. J Radioanal Nucl Chem 330, 857–869 (2021). https://doi.org/10.1007/s10967-021-07968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07968-6

Keywords

Navigation