Skip to main content
Log in

213Bi production and complexation with new picolinate containing ligands

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Binding of bismuth cation with two newly synthesized picolinate containing acyclic (L1) and macrocyclic (L2) ligands was studied. Both ligands demonstrate complex formation with Bi3+ under ambient conditions with high complexation constants. Serum stability of the complexes was investigated in serum protein excess of 10- and 100-times. Experiments with no-carrier-added radiobismuth (207Bi and 213Bi) were performed. A one-column 225Ac/213Bi generator system, based on Ac resin (Triskem Inc.), was tested. The overall yield of 213Bi was exceeding 85% with 225Ac breakthrough below 10−4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reilly RM (2010) The radiochemistry of monoclonal antibodies and peptides. In: Railly R (ed) Monoclonal antibody and peptide-targeted radiotherapy of cancer, 1st edn. Wiley, New York

    Chapter  Google Scholar 

  2. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, Scheinberg DA (1998) Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 25:1341–1351

    Article  CAS  PubMed  Google Scholar 

  3. Morgenstern A, Apostolidis C, Kratochwil C, Sathekge M, Krolicki L, Bruchertseifer F (2018) An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm 11:200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruck M, Locherer F (2015) Reprint of “Coordination chemistry of homoatomic ligands of bismuth, selenium and tellurium”. Coordin Chem Rev 297–298:208–217

    Article  CAS  Google Scholar 

  5. Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, Davodeau F, Cherel M (2005) Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 32:601–614

    Article  CAS  Google Scholar 

  6. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/. Accessed 12 Mar 2019

  7. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  8. Spivakov BY, Stoyanov ES, Gribov LA, Zolotov YA (1979) Raman laser spectroscopic studies of bismuth(III) halide complexes in aqueous solutions. J Inorg Nucl Chem 41:453–455

    Article  CAS  Google Scholar 

  9. McDevitt MR, Finn RD, Sgouros G, Ma D, Scheinberg DA (1999) An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot 50:895–904

    Article  CAS  PubMed  Google Scholar 

  10. Bray LA, Tingey JM, DesChane JR, Egorov OB, Tenforde TS, Wilbur DS, Hamlin DK, Pathare PM (2000) Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind Eng Chem Res 39:3189–3194

    Article  CAS  Google Scholar 

  11. McAlister DR, Horwitz EP (2009) Automated two column generator systems for medical radionuclides. Appl Radiat Isot 67:1985–1991

    Article  CAS  PubMed  Google Scholar 

  12. Wu C, Brechbiel MW, Gansow OA (1997) An improved generator for the production of 213Bi from 225Ac. Radiochim Acta 79:141–144

    CAS  Google Scholar 

  13. Institute for Transuranium Elements, Annual report 2006. ISBN 978-92-79-05001-5

  14. Morgenstern A, Bruchertseifer F, Apostolidis C (2012) Bismuth-213 and actinium-225–generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr Radiopharm 5:221–227

    Article  CAS  PubMed  Google Scholar 

  15. Guseva LI, Dogadkin NN (2009) Development of a tandem generator system 229Th/225Ac/213Bi for repeated production of short-lived α-emitting radionuclides. Radiochemistry 51:169–174

    Article  CAS  Google Scholar 

  16. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS, Blower PJ (2012) Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjugate Chem 23:1029–1039

    Article  CAS  Google Scholar 

  17. Camera L, Kinuya S, Garmestani K, Wu C, Brechbiei MW, Pal LH, McMuriy TJ, Gansow OA, Pastan I, Paik CH, Carrasqufflo JA (1994) Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. J Nucl Med 35:882–889

    CAS  PubMed  Google Scholar 

  18. Ruegg CL, Anderson-Berg WT, Brechbiel MW, Mirzadeh S, Gansow OA, Strand M (1990) Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Cancer Res 50:4221–4226

    CAS  PubMed  Google Scholar 

  19. Egorova BV, Matazova EV, Mitrofanov AA, Aleshin GYu, Trigub AL, Zubenko AD, Fedorova OA, Fedorov YuV, Kalmykov SN (2018) Novel pyridine-containing azacrown-ethers for the chelation of therapeutic bismuth radioisotopes: complexation study, radiolabeling, serum stability and biodistribution. Nucl Med Biol 60:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Fedorov YuV, Fedorova OA, Kalmykov SN, Oshchepkov MS, Nelubina YuV, Arkhipov DE, Egorova BV, Zubenko AD (2017) Potentiometric studies of complex formation of amidopyridine macrocycles bearing pendant arms with proton and heavy metal ions in aqueous solution. Polyhedron 124:229–236

    Article  CAS  Google Scholar 

  21. Lima LM, Beyler M, Delgado R, Platas-Iglesias C, Tripier R (2015) Investigating the complexation of the Pb2+/Bi3+ pair with dipicolinate cyclen ligands. Inorg Chem 54:7045–7057

    Article  CAS  PubMed  Google Scholar 

  22. Price EW, Zeglis BM, Cawthray JF, Lewis JS, Adam MJ, Orvig C (2014) What a difference a carbon makes: H4octapa vs H4C3octapa, ligands for In-111 and Lu-177 radiochemistry. Inorg Chem 53:10412–10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thiele NA, Brown V, Kelly JM, Amor-Coarasa A, Jermilova U, MacMillan SN, Nikolopoulou A, Ponnala S, Ramogida CF, Robertson AKH, Rodriguez-Rodriguez C, Schaffer P, Williams C, Babich JJW, Radchenko V, Wilson JJ (2017) An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew Chem Int Ed Engl 56:14712–14717

    Article  CAS  PubMed  Google Scholar 

  24. Zhuikov BL, Kalmykov SN, Ermolaev SV, Aliev RA, Kokhanyuk VM (2011) Produce of 225Ac and 223Ra from thorium irradiated with protons. Radiochemistry 53:66–72

    Article  CAS  Google Scholar 

  25. Aliev RA, Ermolaev SV, Vasiliev AN, Ostapenko VS, Lapshina EV, Zhuikov BL, Zakharov NV, Pozdeev VV, Kokhanyuk VM, Myasoedov BF, Kalmykov SN (2014) Isolation of medicine-applicable actinium-225 from thorium targets irradiated by medium-energy protons. Solv Extr Ion Exch 32:468–477

    Article  CAS  Google Scholar 

  26. Gans P, O’Sullivan B (2000) GLEE, a new computer program for glass electrode calibration. Talanta 51:33–37

    Article  CAS  PubMed  Google Scholar 

  27. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753

    Article  CAS  PubMed  Google Scholar 

  28. Hannel TS, Otu EO, Jensen MP (2007) Thermochemistry of the extraction of bismuth (III) with Bis(2-ethylhexyl) phosphoric and 2-ethyhexyl-phenylphosphonic acids. Solvent Extr Ion Exch 25:241–256

    Article  CAS  Google Scholar 

  29. Erten HN, Mohammed K, Choppin GR (1994) Variation of stability constants of thorium and uranium oxalate complexes with ionic strength. Radiochim Acta 66(67):123–128

    Google Scholar 

  30. Caceci MS, Choppin GR (1983) The determination of the first hydrolysis constant of Eu(III) and Am(III). Radiochim Acta 33:101–104

    CAS  Google Scholar 

  31. Choppin GR, Erten HN, Xia YX (1996) Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim Acta 74:123–127

    CAS  Google Scholar 

  32. Fedorov Y, Fedorova O, Peregudov A, Kalmykov S, Egorova B, Arkhipov D, Zubenko A, Oshchepkov M (2016) Complex formation of pyridine-azacrown ether amide macrocycles with proton and heavy metal ions in aqueous solution. J Phys Org Chem 29:244–250

    Article  CAS  Google Scholar 

  33. Ruddy FH, Dulloo AR, Seidel JG, Petrović B (2004) Separation of the alpha-emitting radioisotopes actinium-225 and bismuth-213 from thorium-229 using alpha recoil methods. Nucl Instrum Methods Phys Res B 213:351–356

    Article  CAS  Google Scholar 

  34. Anderson CJ, Welch MJ (1999) Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev 99:2219–2234

    Article  CAS  PubMed  Google Scholar 

  35. Ma D, McDevitt MR, Finn RD, Scheinberg DA (2001) Breakthrough of 225Ac and its radionuclide daughters from an 225Ac/213Bi generator: development of new methods, quantitative characterization, and implications for clinical use. Appl Radiat Isot 55:667–678

    Article  CAS  PubMed  Google Scholar 

  36. Price EW, Cawthray JF, Bailey GA, Ferreira CL, Boros E, Adam MJ, Orvig C (2012) H4 octapa: an acyclic chelator for 111 in radiopharmaceuticals. J Am Chem Soc 134:8670–8683

    Article  CAS  PubMed  Google Scholar 

  37. Song HA, Kang CS, Baidoo KE, Milenic DE, Chen Y, Dai A, Brechbiel MW, Chong HS (2011) Efficient bifunctional decadentate ligand 3p-C-DEPA for targeted alpha-radioimmunotherapy applications. Bioconjugate Chem 22:1128–1135

    Article  CAS  Google Scholar 

  38. Jaraquemada-Peláez MDG, Wang X, Clough TJ, Cao Y, Choudhary N, Emler K, Patrick BO, Orvig C (2017) H4 octapa: synthesis, solution equilibria and complexes with useful radiopharmaceutical metal ions. Dalton Trans 46:14647–14658

    Article  PubMed  Google Scholar 

  39. Kang CS, Song HA, Milenic DE, Baidoo KE, Brechbiel MW, Chong HS (2013) Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: radiolabeling, serum stability, and biodistribution and tumor uptake studies. Nucl Med Biol 40:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Milenic DE, Roselli M, Mirzadeh S, Pippin CG, Gansow OA, Colcher D, Brechbiel MW, Schlom J (2001) In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Cancer Biother Radio 16:133–146

    CAS  Google Scholar 

  41. Nikula TK, McDevitt MR, Finn RD, Wu C, Kozak RW, Garmestani K, Brechbiel MW, Curcio MJ, Pippin CG, Tiffany-Jones L, Geerlings MWS, Apostolidis C, Molinet R, Geerlings MWJ, Gansow OA, Scheinberg DA (1999) Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med 40:166–176

    CAS  PubMed  Google Scholar 

  42. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Casassas E, Fonrodona G (1988) Potentiometric study of the protonation and binary complexation equilibria between the hydrogen ion, copper (II) ion and zinc (II) ion and the picolinate ion in dioxane-water mixtures. Polyhedron 7:689–694

    Article  CAS  Google Scholar 

  44. Thakur P, Conca JL, Dodge CJ, Francis AJ, Choppin GR (2013) Complexation thermodynamics and structural studies of trivalent actinide and lanthanide complexes with DTPA, MS-325 and HMDTPA. Radiochim Acta 101:221–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Russian Science Foundation under Contract № 17-73-10465 (225Ac producing and 225Ac/213Bi generator developing) and Russian Foundation for Basic Research Contract № 18-33-20152 (synthesis of ligands and complexation study).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vasiliev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinenko, I.L., Kalmykova, T.P., Likhosherstova, D.V. et al. 213Bi production and complexation with new picolinate containing ligands. J Radioanal Nucl Chem 321, 531–540 (2019). https://doi.org/10.1007/s10967-019-06610-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06610-w

Keywords

Navigation