Skip to main content
Log in

The effect of radiolabeled antibiotics on biofilm and microorganism within biofilm

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the 131I and 127I labeled linezolid and moxifloxacin effects of minimum inhibitory concentration, and minimum bactericidal concentration on mature biofilm and microorganism within the biofilm. Linezolid and moxifloxacin were labeled with 131I and 127I and chromatography studies were carried out with thin layer radiochromatograpy and high-pressure liquid radiochromatography techniques. Specific activities of radiolabeled LZD and MXF was found to be 53.3 ± 3.1 and 127.3 ± 1.1 MBq/µmol for [131I]LZD and 7.6 ± 0.02 and 55.6 ± 0.8 MBq/µmol for [131I]MXF, respectively. The minimum inhibitory concentration and Time-Kill of Linezolid and moxifloxacin alone and their 131I and 127I labeled forms were tested with a standard strain of meticillin-susceptible Staphylocıccus aureus. MIC values of LNZ and MXF were 2.96 nmol/mL (1 µg/ml) and 0.141 nmol/mL (0.062 µg/ml). Time Kills of MXF and LZD were found to be 0.06 and 1 μg, respectively. Antibiotics labeled with beta-emitting radioactive molecule may be a new theranostics strategy for biofilm infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stewart PS, Davison WM, Steenbergen JN (2009) Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 53:3505–3507

    Article  CAS  Google Scholar 

  2. Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM et al (1997) Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 41:2132–2136

    CAS  Google Scholar 

  3. Zhou CC, Swaney SM, Shinabarger DL, Stockman BJ (2002) 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother 46:625–629

    Article  CAS  Google Scholar 

  4. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    CAS  Google Scholar 

  5. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  6. Souli M, Giamarellou H (1998) Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob Agents Chemother 42:939–941

    CAS  Google Scholar 

  7. Gray ED, Peters G, Verstegen M, Regelmann WE (1984) Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet 1:365–367

    Article  CAS  Google Scholar 

  8. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  CAS  Google Scholar 

  9. Plowman R, Graves N, Roberts J (1997) Spreading costs. Health Serv J 107(suppl):7

    Google Scholar 

  10. Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 62:861–869

    Article  CAS  Google Scholar 

  11. Wayne PA (2008) CLSI. In: CaLS Institute (ed) Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement, CLSI document M100-S18, 7th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  12. Christensen GD, Barker LP, Mawhinney TP, Baddour LM, Simpson WA (1990) Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect Immun 58:2906–2911

    CAS  Google Scholar 

  13. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  Google Scholar 

  14. Unak T, Akgun Z, Yildirim Y, Duman Y, Erenel G (2001) Self-radioiodination of iodogen. Appl Radiat Isot 54:749–752

    Article  CAS  Google Scholar 

  15. Murhekar VV, Mathur A, Prabhakar G, Karkhanis BP, Pilkhwal NS, Tiwari BK, Padmanabhan D, Samuel G, Sachdev SS (2014) Specific activity determination and stability studies of therapeutic 131I-mIBG radiopharmaceutical. J Radioanal Nucl Chem 302:883–888

    Article  CAS  Google Scholar 

  16. Sakarya S, Oncu S, Oncu S, Ozturk B, Tuncer G, Sari C (2004) Neuraminidase produces dose-dependent decrease of slime production and adherence of slime-forming, coagulase-negative staphylococci. Arch Med Res 35(4):275–278

    Article  CAS  Google Scholar 

  17. Liepe K, Zaknun JJ, Padhy A, Barrenechea E, Soroa V, Shrikant S et al (2011) Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee. Ann Nucl Med 25:317–323

    Article  Google Scholar 

  18. Zwolak R, Majdan M, Skorski M, Chrapko B (2012) Efficacy of radiosynoviorthesis and its impact on chosen inflammatory markers. Rheumatol Int 32:2339–2344

    Article  CAS  Google Scholar 

  19. Asikoglu M, Yurt F, Cagliyan O, Unak P, Ozkilic H (2000) Detecting inflammation with 131I-labeled ornidazole. Appl Radiat Isot 53:411–413

    Article  CAS  Google Scholar 

  20. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M et al (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  21. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  22. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  Google Scholar 

  23. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842

    Article  CAS  Google Scholar 

  24. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  Google Scholar 

  25. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  CAS  Google Scholar 

  26. Kobayashi K, Iwano M (2013) BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85:51–66

    Article  Google Scholar 

  27. Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR et al (2013) BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA 110:13600–13605

    Article  CAS  Google Scholar 

  28. Gualdi L, Tagliabue L, Bertagnoli S, Ierano T, De Castro C, Landini P (2008) Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154:2017–2024

    Article  CAS  Google Scholar 

  29. Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4:103–113

    Article  Google Scholar 

  30. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824

    Article  CAS  Google Scholar 

  31. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340–345

    Article  CAS  Google Scholar 

  32. Kumon H, Tomochika K, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38:615–619

    Article  CAS  Google Scholar 

  33. Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518–523

    Article  CAS  Google Scholar 

  34. Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22:667–674

    Article  CAS  Google Scholar 

  35. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  36. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  Google Scholar 

  37. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196

    Article  CAS  Google Scholar 

  38. Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056

    Article  CAS  Google Scholar 

  39. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  40. Dadachova E (2008) Radioimmunotherapy of infection with Bi-labeled antibodies. Curr Radiopharm 1:234–239

    Article  CAS  Google Scholar 

  41. Martinez LR, Bryan RA, Apostolidis C, Morgenstern A, Casadevall A, Dadachova E (2006) Antibody-guided alpha radiation effectively damages fungal biofilms. Antimicrob Agents Chemother 50:2132–2136

    Article  CAS  Google Scholar 

  42. Bryan RA, Huang X, Morgenstern A, Bruchertseifer F, Casadevall A, Dadachova E (2008) Radiofungicidal effects of external gamma radiation and antibody-targeted beta and alpha radiation on Cryptococcus neoformans. Antimicrob Agents Chemother 52(6):2232–2235

    Article  CAS  Google Scholar 

  43. Lambrecht FY, Yilmaz O, Durkan K, Unak P, Bayrak E (2009) Preparation and biodistribution of [131I]linezolid in animal model infection and inflammation. J Radioanal Nucl Chem 281:415–419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. F.Gül Gümüşer and Dr. E. Sayit Bilgin (ManisaCelal Bayar University) for providing the laboratory conditions. We also thank Norma Merce Yagcier for reviewing our study as a native Engish speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Avcıbaşı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avcıbaşı, U., Demiroğlu, H., Sakarya, S. et al. The effect of radiolabeled antibiotics on biofilm and microorganism within biofilm. J Radioanal Nucl Chem 316, 275–287 (2018). https://doi.org/10.1007/s10967-018-5750-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5750-3

Keywords

Navigation