Skip to main content
Log in

Radiometric analysis of 90Sr in fish bone ash samples by liquid scintillation counting after separation by extraction chromatographic resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple analytical method was developed for the determination of 90Sr in fish bone ash samples. The adsorption behaviors of 26 metal ions on Sr Resin and AnaLig Sr-01 resin were examined. The obtained distribution coefficients show that Sr Resin has suitable selectivity. The proposed method consists of co-precipitation with calcium phosphate and purification by Sr Resin. After ingrowth, 90Y was measured using a liquid scintillation counter. The proposed method was validated by radiometric analysis of 90Sr in certified reference materials. Finally, the proposed method was applied for interlaboratory comparison. The analytical results by proposed method showed acceptable z scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata T (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:308–319

    Article  CAS  Google Scholar 

  2. Nakanishi TM, Kobayashi NI, Tanoi K (2013) Radioactive cesium deposition on rice, wheat, peach tree and soil after nuclear accident in Fukushima. J Radioanal Nucl Chem 296:985–989

    Article  CAS  Google Scholar 

  3. Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 111:83–99

    Article  CAS  Google Scholar 

  4. Ma´te´ B, Sobiech-Matura K, Altzitzoglou T (2015) Radionuclide monitoring in foodstuff: overview of the current implementation in the EU countries. J Radioanal Nucl Chem 303:2547–2552

    Google Scholar 

  5. Merz S, Shozugawa K, Steinhauser G (2016) Effective and ecological half-lives of 90Sr and 137Cs observed in wheat and rice in Japan. J Radioanal Nucl Chem 307:1807–1810

    Article  CAS  Google Scholar 

  6. Steinhauser G, Schauer V, Shozugawa K (2013) Concentration of strontium-90 at selected hot spots in Japan. PLoS ONE. doi:10.1371/journal.pone.0057760

    Google Scholar 

  7. Takagai Y, Furukawa M, Kameo Y, Suzuki K (2014) Sequential inductively coupled plasma quadrupole mass-spectrometric quantification of radioactive strontium-90 incorporating cascade separation steps for radioactive contamination rapid survey. Anal Methods 6:355–362

    Article  CAS  Google Scholar 

  8. Kavasi N, Sahoo SK, Sorimachi A, Tokonami S, Aono T, Yoshida S (2015) Measurement of 90Sr in soil samples affected by the Fukushima Daiichi Nuclear Power Plant accident. J Radioanal Nucl Chem 303:2565–2570

    CAS  Google Scholar 

  9. Sahoo SK, Kavasi N, Sorimachi A, Arae H, Tokonami S, Mietelski JW, Łokas E, Yoshida S (2016) Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima daiichi nuclear power plant. Sci Rep. doi:10.1038/srep23925

    Google Scholar 

  10. Amano H, Sakamoto H, Shiga N, Suzuki K (2016) Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan. Appl Radiat Isot 112:131–135

    Article  CAS  Google Scholar 

  11. Nabeshi H, Tsutsumi T, Uekusa Y, Hachisuka A, Matsuda R, Teshima R (2015) Surveillance of strontium-90 in foods after the Fukushima Daiichi Nuclear Power Plant accident. Food Hyg Saf Sci 56:133–143

    Article  CAS  Google Scholar 

  12. Vajda N, Kim CK (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326

    Article  CAS  Google Scholar 

  13. Povinec PP, Hirose K, Aoyama M (2012) Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact. Environ Sci Technol 46:10356–10363. doi:10.1021/es301997c

    CAS  Google Scholar 

  14. Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Buesseler KO (2013) 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident. Biogeosciences 10:3649–3659. doi:10.5194/bg-10-3649-2013

    Article  Google Scholar 

  15. Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi Nuclear accident. Environ Sci Technol 50:173–180

    Article  CAS  Google Scholar 

  16. Merz S, Shozugawa K, Steinhauser G (2015) Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima Nuclear accident. Environ Sci Technol 49:2875–2885

    Article  CAS  Google Scholar 

  17. Fujimoto K, Miki S, Kaeriyama H, Shigenobu Y, Takagi K, Ambe D, Ono T, Watanabe T, Morinaga K, Nakata K, Morita T (2015) Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant. Environ Sci Technol 49:7294–7301

    Article  CAS  Google Scholar 

  18. Miki S, Fujimoto K, Shigenobu Y, Ambe D, Kaeriyama H, Takagi K, Ono T, Watanabe T, Sugisaki H, Morita T (2017) Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident. Fish Oceanogr 26:221–233

    Article  Google Scholar 

  19. Karube Z, Inuzuka Y, Tanaka A, Kurishima K, Kihou N, Shibata Y (2016) Radiostrontium monitoring of bivalves from the Pacific coast of eastern Japan. Environ Sci Pollut Res 23:17095–17104

    Article  CAS  Google Scholar 

  20. Oikawa S, Watanabe T, Takata H, Suzuki C, Nakahara M, Misono J (2013) Long term temporal changes of 90Sr and 137Cs in seawater, bottom sediment and marine organism samples- from the Chernobyl accident to immediately after the Fukushima accident. Bunseki Kagaku 62:455–474

    Article  CAS  Google Scholar 

  21. MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2003) Analysis method of radiostrontium. Japan Chemical Analysis Center, Chiba

    Google Scholar 

  22. International Organization for Standardization (2009) ISO 18589-5 measurement of radioactivity in the environment–soil–Part 5: measurement of strontium 90. ISO, Geneva, Switzerland

    Google Scholar 

  23. Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63:522–525

    Article  CAS  Google Scholar 

  24. Maxwell SL, Culligan BK, Hutchison JB, Utsey RC, McAlister DR (2015) Rapid determination of 90Sr in seawater sample. J Radioanal Nucl Chem 303:709–717

    Article  CAS  Google Scholar 

  25. Maxwell SL, Culligan B, Hutchison JB, Utsey RC, Sudowe R, McAlister DR (2016) Rapid method to determine 89Sr/90Sr in large concrete samples. J Radioanal Nucl Chem 310:399–411

    Article  CAS  Google Scholar 

  26. Izatt RM, Bruening RL, Bruening ML, Tarbet BJ, Krakowiak KE, Bradshaw JS, Christensen JJ (1988) Removal and separation of metal-ions from aqueous-solutions using a silica-gel-bonded macrocycle system. Anal Chem 60:1825–1826

    Article  CAS  Google Scholar 

  27. Izatt RM, Bradshaw JS, Bruening BL (1996) Accomplishment of difficult chemical separations using solid phase extraction. Pure & Appl Chem. 68:1237–1241

    Article  CAS  Google Scholar 

  28. Izatt NE, Bruening RL, Krakowiak KE, Izatt SR (2000) Contributions of Professor Reed M. Izatt to molecular recognition technology: from laboratory to commercial application. Ind Eng Chem Res 39:3405–3411

    Article  CAS  Google Scholar 

  29. Kameo Y, Katayama A, Fujiwara A, Haraga T, Nakashima M (2007) Rapid determination of 89Sr and 90Sr in radioactive waste using Sr extraction disk and beta-ray spectrometer. J Radioanal Nucl Chem 274:71–78

    Article  CAS  Google Scholar 

  30. Ometáková J, Dulanská S, Mátel L, Remenec B (2011) A comparison of classical 90Sr separation methods with selective separation using molecular recognition technology products AnaLig® Sr-01 gel, 3 M Empore™ Strontium Rad Disk and extraction chromatography Sr Resin®. J Radioanal Nucl Chem 290:319–323

    Article  Google Scholar 

  31. AnaLig Data Sheet: Sr-01, IBC 10604.Rev1, IBC Advanced Technology, Utah

  32. Furusho Y, Rahman IMM, Hasegawa H, Izatt NE (2016) In: Izatt RM (ed) Metal sustainability: global challenges, consequences, and prospects. Wiley, New York

    Google Scholar 

  33. Jerome SM, Inn KGW, Wätjen U, Lin Z (2015) Certified reference, intercomparison, performance evaluation and emergency preparedness exercise materials for radionuclides in food. J Radioanal Nucl Chem 303:1771–1777

    CAS  Google Scholar 

  34. Wätjen U, Altzitzoglou T, Ceccatelli A, Dikmen H, Emteborg H, Ferreux L, Frechou C, La Rosa J, Luca A, Moreno Y, Oropesa P, Pierre S, Schmiedel M, Spasova Y, Szántóa Z, Szücs L, Wershofen H, Yücel Ü (2012) Results of an international comparison for the determination of radionuclide activity in bilberry material. Appl Radiat Isot 70:1843–1849

    Article  Google Scholar 

  35. Minai Y, Miura T, Yonezawa C, Iwamoto H, Shibukawa M, Takagai Y, Furukawa M, Arakawa F, Okada Y, Kakita K, Kojima I, Hirai S (2016) Certified reference materials of agricultural products and foods bearing radioactivity from the Fukushima nuclear accident. J Radioanal Nucl Chem 307:2421–2426

    Article  CAS  Google Scholar 

  36. Development report of JSAC CRM 0784. http://www.jsac.or.jp/srm/RDJSAC0781.pdf. Accessed 19 Jan 2017

  37. Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52

    Article  CAS  Google Scholar 

  38. Eikenberg J, Beer H, Jäggi M (2014) Determination of 210Pb and 226Ra/228Ra in continental water using HIDEX 300SL LS-spectrometer with TDCR efficiency tracing and optimized α/β-discrimination. Appl Radiat Isot 93:64–69

    Article  CAS  Google Scholar 

  39. Lin Z, Inn KGW, Altzitzoglou T, Arnold D, Cavadore D, Ham GJ, Korun M, Wershofen H, Takata Y, Young A (1998) Development of the NIST bone ash standard reference material for environmental radioactivity measurement. Appl Radiat Isot 49:1301–1306

    Article  CAS  Google Scholar 

  40. Pilviö R, LaRosa JJ, Mouchel D, Wordel R, Bickel M, Altzitzoglou T (1999) Measurement of low-level radioactivity in bone ash. J Environ Radioact 43:343–356

    Article  Google Scholar 

  41. Maxwell SL III, Faison DM (2008) Rapid column extraction method for actinides and strontium in fish and other animal tissue samples. J Radioanal Nucl Chem 275:605–612

    Article  CAS  Google Scholar 

  42. Horwitz EP, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  43. Chikayama Y, Yagi Y, Shiono H, Watanabe A, Miyamoto T (1999) Accumulation of 90Sr to Cattle and Horse Bones in Hokkaido. Radioisotopes 48:283–287

    Article  CAS  Google Scholar 

  44. International Organization for Standardization (2015) ISO 13528:2015(E) Statistical methods for use in proficiency testing by interlaboratory comparison. ISO, Geneva, Switzerland

    Google Scholar 

  45. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Japan Science and Technology Agency (JST) through the “Development of Systems and Technology for Advanced Measurement and Analysis” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Miura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, T., Minai, Y. Radiometric analysis of 90Sr in fish bone ash samples by liquid scintillation counting after separation by extraction chromatographic resin. J Radioanal Nucl Chem 313, 343–351 (2017). https://doi.org/10.1007/s10967-017-5319-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5319-6

Keywords

Navigation