Skip to main content
Log in

Technologically elevated natural radioactivity and assessment of dose to workers around a granitic uranium deposit area, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Gamma dose rates in a uranium site in Guangdong, China were measured based on different functioning areas (mining area, milling area, tailings area and downstream area); four representative soil profiles were measured with HP Ge gamma spectrometry. The gamma dose rates as well as annual effective dose overall exceeded the relevant values reported from other countries. Both the external and the internal hazard index overwhelmingly exceeded the recommended value. Some areas were heavily polluted with technologically elevated concentrations of 238U and 226Ra, while others were observed with extremely high background level of natural radioactivity, mainly stemming from granitic lithology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Reefy HI, Sharshar T, Zaghloul R, Badran HM (2006) Distribution of gamma-ray emitting radionuclides in the environment of Burullus Lake: I. Soils and vegetations. J Environ Radioact 87:148–169

    Article  CAS  Google Scholar 

  2. Yang YX, Wu XM, Jiang ZY, Wang WX, Lu JG, Lin J, Hsia YF (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

  3. UNSCEAR (1988) Sources, effects and risks of ionizing radiation. Report to the General Assembly, New York

    Google Scholar 

  4. Narayana Y, Rajashekara KM, Siddappa K (2007) Natural radioactivity in some major rivers of coastal Karnataka on the southwest coast of India. J Environ Radioact 95:98–106

    Article  CAS  Google Scholar 

  5. Yoshimura EM, Da Silva AAR, Anjos RM, Umisedo NK, Rizzotto M, Velasco H, Valladares DL (2016) Radon concentration in air and external gamma dose rate: is there a correlation. J Radioanal Nucl Chem 307:787–792

    Article  CAS  Google Scholar 

  6. Carvalho FP, Oliveira JM (2007) Alpha emitters from uranium mining in the environment. J Radioanal Nucl Chem 274:167–174

    Article  CAS  Google Scholar 

  7. Nikolov J, Forkapić S, Hansman J, Bikit I, Vesković M, Todorović N, Bikit K (2014) Natural radioactivity around former uranium mine, Gabrovnica in eastern Serbia. J Radioanal Nucl Chem 302:477–482

    Article  CAS  Google Scholar 

  8. Blanco P, Tomé FV, Lozano JC (2005) Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J Environ Radioact 79:315–330

    Article  CAS  Google Scholar 

  9. Carvalho FP, Oliveira JM, Malta M, Lemos ME (2014) Radioanalytical assessment of environmental contamination around non-remediated uranium mining legacy site and radium mobility. J Radioanal Nucl Chem 299:119–125

    Article  CAS  Google Scholar 

  10. Smodiš B, Štrok M, Černe M (2014) Radioecology around a closed uranium mine. J Radioanal Nucl Chem 299:765–771

    Article  Google Scholar 

  11. Štrok M, Smodiš B (2013) Partitioning of natural radionuclides in sediments around a former uranium mine and mill. J Radioanal Nucl Chem 297:201–207

    Article  Google Scholar 

  12. Maity S, Mishra S, Pandit GG (2013) Estimation of distribution coefficient of uranium around a uranium mining site. J Radioanal Nucl Chem 295:1581–1588

    Article  CAS  Google Scholar 

  13. Arabi SA, Funtua II, Dewu BBM, Alagbe SA, Kwaya MY, Garba ML, Baloga AD (2013) Activity concentration of uranium in groundwater from uranium mineralized areas and its neighborhood. J Radioanal Nucl Chem 295:135–142

    Article  CAS  Google Scholar 

  14. Chen YW, Bi XW, Hu RZ, Dong SH (2012) Element geochemistry, mineralogy, geochronology and zircon Hf isotope of the Luxi and Xiazhuang granites in Guangdong Province, China: implications for U mineralization. Lithos 150:119–134

    Article  CAS  Google Scholar 

  15. Wang J, Liu J, Zhu L, Qi JY, Chen YH, Xiao TF, Fu SM, Wang CL, Li JW (2012) Uranium and thorium leached from uranium mill tailing of Guangdong Province, China and its implication for radiological risk. Radiat Prot Dosim 152:215–219

    Article  CAS  Google Scholar 

  16. Shuai ZQ, Wen WH, Zhao YM, Zhao YM, Zhang LC (2001) The status of radioactive pollution due to associated minerals and countermeasures study. Radiat Prot Bull 21:3–5

    Google Scholar 

  17. Song G, Chen D, Tang Z, Zhang Z, Xie W (2012) Natural radioactivity levels in topsoil from the Pearl river delta zone, Guangdong, China. J Environ Radioact 103:48–53

    Article  CAS  Google Scholar 

  18. UNSCEAR (2000) Exposures from natural radiation sources. Annex B, New York

    Google Scholar 

  19. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  20. UNSCEAR (1982) Ionising radiation sources and biological effects. A/37/45, New York

  21. Senthilkumar B, Dhavamani V, Ramkumar S, Philominathan P (2010) Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure. J Med Phys 35:48–53

    Article  CAS  Google Scholar 

  22. Wang J, Liu J, Li H, Song G, Chen Y, Xiao T, Zhu L (2012) Surface water contamination by uranium mining/milling activities in northern Guangdong Province, China. Clean Soil Air Water 40:1357–1363

    Article  CAS  Google Scholar 

  23. Funtua II, Elegba SB (2005) Radiation exposure from high-level radiation area and related mining and processing activities of Jos Plateau, central Nigeria. Int Congr Ser 1276:401–402

    Article  Google Scholar 

  24. Daroussin JL, Bernhard S, Granet D (2000) Remediation and corresponding radiological impact of French uranium mining and milling sites (Cogema). Proceedings of the international congress of the international radiation protection association (IRPA10), T-19(2)-4, P-4a–249

  25. Torgoev I, Aleshin Y, Ashirov G (2008) Impacts of uranium mining on environment of Fergana Valley in central Asia. In: Merkel BJ, Hasche-Berger A (eds) Uranium, mining and hydrogeology. Springer, Heidelberg

    Google Scholar 

  26. Torgoev I (2009) Environmental remediation in central asian countries. International conference on remediation of land contaminated by radioactive material residues. IAEA Nuclear Safety and Security, Astana

  27. Lespukh E, Stegnar P, Usubalieva A, Solomatina A, Tolongutov B, Beishenkulova R (2013) Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Kyrgyzstan. J Environ Radioact 123:28–36

    Article  CAS  Google Scholar 

  28. China National Environmental Monitoring Center (1990) Background values of soil elements in China. China Environmental Science Press, Beijing

    Google Scholar 

  29. IAEA (1989) Construction and use of calibration facilities for radiometric field equipment. Technical report 309, Vienna

  30. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to the general assembly, with scientific annexes. New York

  31. Apps MJ, Duke MJM, Stephens-Newsham LG (1988) A study of radionuclides in vegetation on abandoned uranium tailings. J Radioanal Nucl Chem 123:133–147

    Article  CAS  Google Scholar 

  32. Skipperud L, Strømman G, Yunusov M, Stegnar P, Uralbekov B, Tilloboev H, Salbu B (2013) Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J Environ Radioact 123:50–62

    Article  CAS  Google Scholar 

  33. Florea N, Duliu OG (2012) Rehabilitation of the Barzava uranium mine tailings. J Hazard Toxic Radioact Waste 17:230–236

    Article  Google Scholar 

  34. Sartandel SJ, Jha SK, Bara SV, Tripathi RM, Puranik VD (2009) Spatial distribution of uranium and thorium in the surface soil around proposed uranium mining site at Lambapur and its vertical profile in the Nagarjuna Sagar Dam. J Environ Radioact 100:831–834

    Article  CAS  Google Scholar 

  35. Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J Geochem Explor 85:119–137

    Article  CAS  Google Scholar 

  36. Pereira AJSC, Neves LJPF (2012) Estimation of the radiological background and dose assessment in áreas with naturally occurring uranium geochemical anomalies—a case study in the Iberian Massif (central Portugal). J Environ Radioact 112:96–107

    Article  CAS  Google Scholar 

  37. Dahlkamp FJ (2009) Uranium deposits of the world. Springer, Berlin

    Book  Google Scholar 

  38. Mohamed GH (2010) The measurement of radioactivity in soil samples. Doctoral dissertation, University of Surrey

  39. Paiva JDS, Sousa EE, Farias EEG, Carmo AM, Souza EM, França EJ (2016) Natural radionuclides in mangrove soils from the state of Pernambuco, Brazil. J Radioanal Nucl Chem 307:883–889

    Article  Google Scholar 

  40. Wang J, Liu J, Li H, Chen Y, Xiao T, Song G, Chen D, Wang C (2016) Uranium and thorium leachability in contaminated stream sediments from a uranium minesite. J Geochem Explor. doi:10.1016/j.gexplo.2016.01.008

    Google Scholar 

  41. Freitas AC, Alencar AS (2004) Gamma dose rates and distribution of natural radionuclides in sand beaches—Ilha Grande, southeastern Brazil. J Environ Radioact 75:211–223

    Article  CAS  Google Scholar 

  42. Tripathi RM, Sahoo SK, Jha VN, Kumar R, Shukla AK, Puranik VD, Kushwaha HS (2010) Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India. Radiat Prot Dosim 147:565–570

    Article  Google Scholar 

  43. Carvalho FP, Madruga MJ, Reis MC, Alves JG, Oliveira JM, Gouveia J, Silva L (2007) Radioactivity in the environment around past radium and uranium mining sites of Portugal. J Environ Radioact 96:39–46

    Article  CAS  Google Scholar 

  44. Poncela LQ, Navarro PF, Arozamena JG, Palomino CR, Sainz C, Matarranz JM, Arteche J (2004) Population dose in the vicinity of old Spanish uranium mines. Sci Total Environ 329:283–288

    Article  Google Scholar 

  45. Tomasek L, Malatova I (2006) Leukaemia and lymphoma among Czech uranium miners. Med Radiol Radiat Saf 51:74–79

    Google Scholar 

  46. Dupree-Ellis E, Watkins J, Ingle JN, Phillips J (2000) External radiation exposure and mortality in a cohort of uranium processing workers. Am J Epidemiol 152:91–95

    Article  CAS  Google Scholar 

  47. IAEA (2001) Impact of new environmental and safety regulations on uranium exploration, mining, milling and management of its waste. IAEA-TECDOC-1244, Vienna

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (41303007, 41372364, 41373117, U1501231, 41573008, 41573119 and 41273100); Guangdong Provincial Natural Science Foundation (2015A030313512 and 2014A030313527); Guangzhou Education Bureau (1201431072) and open fund granted by Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (KLMM20150108). We would like to thank Ms. Zhu Li and Feng Yingsi for technical assistance, and anonymous reviewers who greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang or Yongheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, J., Chen, Y. et al. Technologically elevated natural radioactivity and assessment of dose to workers around a granitic uranium deposit area, China. J Radioanal Nucl Chem 310, 733–741 (2016). https://doi.org/10.1007/s10967-016-4809-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4809-2

Keywords

Navigation