Skip to main content
Log in

Radiolabeling and cell incorporation studies of gemcitabine HCl microspheres on bladder cancer and papilloma cell line

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study incorporation differences between the developed formulations for treatment for bladder cancer was investigated by radioactive cell culture studies. Developed bioadhesive microspheres (MS) and gemcitabinehydrochloride loaded MS (GHCl-MS) were radiolabeled. After observing the optimum labeling conditions, 99mTc-MS and 99mTc-GHCl-MS were loaded to the chitosan gel (CG) and poloxamer gel. The in vitro cell incorporation affinity of newly developed formulations to bladder papilloma (RT4) and the carcinoma (T24) cell lines was investigated. Cell culture studies results indicate that the use of prolonged release bioadhesive CG formulation was highly improved the targeting of the GHCl to the cancer cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Twombly R (2005) Cancer surpasses heart disease as leading cause of death for all but the very elderly. J Natl Cancer Inst 97(5):330–331

    Article  Google Scholar 

  2. Cheung G et al (2013) Recent advances in the diagnosis and treatment of bladder cancer. BMC Med 11:13

    Article  Google Scholar 

  3. Jordan EJ, Iyer G (2015) Targeted therapy in advanced bladder cancer: what have we learned? Urol Clin N Am 42(2):253–262

    Article  Google Scholar 

  4. Sonpavde G et al (2015) Future directions and targeted therapies in bladder cancer. Hematol Oncol Clin N Am 29(2):361–376

    Article  Google Scholar 

  5. Guha Sarkar S, Banerjee R (2010) Intravesical drug delivery: challenges, current status, opportunities and novel strategies. J Control Release 148(2):147–159

    Article  CAS  Google Scholar 

  6. Banerjee T et al (2005) Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles. Int J Pharm 289(1–2):189–195

    Article  CAS  Google Scholar 

  7. Şenyiğit ZA et al (2014) Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm 64(2):139–156

    Google Scholar 

  8. Patel PV et al (2013) Formulation and evaluation of bioadhesive gel incorporated amoxicillin trihydrate loaded microspheres for periodontal therapy. Int J Pharm Innov 3(3):98–109

    Google Scholar 

  9. Karthikeyan K et al (2012) Formulation of bioadhesive carbomer gel incorporating drug-loaded gelatin microspheres for periodontal therapy. Trop J Pharm Res 11(3):335–343

    CAS  Google Scholar 

  10. Krauser JA (2013) A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J Label Compd Radiopharm 56(9–10):441–446

    Article  CAS  Google Scholar 

  11. Häfeli U (2002) Radioactive microspheres for medical applications. In: Cuyper MD, Bulte JWM (eds) Physics and chemistry basis of biotechnology, vol 7. Springer, Netherlands, pp 213–248

    Chapter  Google Scholar 

  12. Burjak M et al (2001) The study of drug release from microspheres adhered on pig vesical mucosa. Int J Pharm 224:123–130

    Article  CAS  Google Scholar 

  13. Karavana SY, et al (2014) Formulation characterization and in vitro evaluation of gemcitabine hydrochloride microspheres for intravesical administration. In: 9th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology. Lisbon

  14. Choi HG et al (1998) In-situ gelling and mucoadhesive liquid suppository containing acetaminophen: enhanced bioavailability. Int J Pharm 165(1):23–32

    Article  CAS  Google Scholar 

  15. Baloglu E et al (2011) Rheological and mechanical properties of poloxamer mixtures as a mucoadhesive gel base. Pharm Dev Technol 16(6):627–636

    Article  CAS  Google Scholar 

  16. Williams LE (2008) Anniversary paper: nuclear medicine—fifty years and still counting. Med Phys 35(7):3020–3029

    Article  Google Scholar 

  17. Krishnaiah YS et al (1998) Gamma scintigraphic studies on guar gum matrix tablets for colonic drug delivery in healthy human volunteers. J Control Release 55(2–3):245–252

    Article  CAS  Google Scholar 

  18. Marvola T et al (2008) Neutron activation based gamma scintigraphic evaluation of enteric-coated capsules for local treatment in colon. Int J Pharm 349(1–2):24–29

    Article  CAS  Google Scholar 

  19. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304

    Article  CAS  Google Scholar 

  20. Uhl P et al (2015) Radionuclides in drug development. Drug Discov Today 20(2):198–208

    Article  CAS  Google Scholar 

  21. Liu S (2005) 6-hydrazinonicotinamide derivatives as bifunctional coupling agents for 99mTc-labeling of small biomolecules. Top Curr Chem 252:117–153

    CAS  Google Scholar 

  22. Goodwin DA et al (1968) Ferric hydroxide particles labeled with indium In-113m for lung scanning. JAMA 206(2):339–343

    Article  CAS  Google Scholar 

  23. Lin MS, Winchell HS (1972) A “kit” method for the preparation of technetium-tin(II) colloid and a study of its properties. J Nucl Med 13(1):58–65

    CAS  Google Scholar 

  24. Nelp WB (1975) Evaluation of colloids for RES function studies. In: Subramanian G, Rhodes B, Cooper JF, Sodd V (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–356

    Google Scholar 

  25. Zolle I (1976) Method for incorporating substances into protein microspheres. US Patent No. 3937668

  26. Amersham (1993) Guide to radioiodination techniques: iodine-125. Little Chalfont, Amersham International, p 64

    Google Scholar 

  27. Duncan R et al (1987) Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br J Cancer 55(2):165–174

    Article  CAS  Google Scholar 

  28. Ekinci M et al (2015) Methotrexate loaded chitosan nanoparticles: preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. J Drug Deliv Sci Technol 30(A):107–113

    Article  CAS  Google Scholar 

  29. Ozgenc E et al (2015) Radiolabeling and in vitro evaluation of 99mTc-methotrexate on breast cancer cell line. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4210-6

    Google Scholar 

  30. Gundogdu E et al (2014) In vitro incorporation studies of 99mTc-alendronate sodium at different bone cell lines. J Radioanal Nucl Chem 299(3):1255–1260

    Article  CAS  Google Scholar 

  31. Tsui KH et al (2015) Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep 5:12870. doi:10.1038/srep12870

    Article  CAS  Google Scholar 

  32. Silva GN et al (2010) Cell cycle arrest and apoptosis in TP53 subtypes of bladder carcinoma cell lines treated with cisplatin and gemcitabine. Exp Biol Med 235(7):814–824

    Article  Google Scholar 

  33. Gundogdu E et al (2015) Radiolabeling efficiency and cell incorporation of chitosan nanoparticles. J Drug Deliv Sci Technol 29:84–89

    Article  CAS  Google Scholar 

  34. Fang J et al (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  Google Scholar 

  35. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135

    Article  CAS  Google Scholar 

  36. Maeda H et al (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  Google Scholar 

  37. Peppas NA (1991) Physiologically responsive gels. J Bioact Compat Polym 6(3):241–246

    Article  CAS  Google Scholar 

  38. Kramaric A, et al (1992) Thermoreversible gel as a liquid pharmaceutical carrier for a galenic formulation. European Patent 0551626 (A1)

  39. Ay Şenyiğit Z et al (2015) Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan–thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int J Nanomed 10:6493–6507

    Google Scholar 

  40. El-Hefian EA et al (2010) Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem 34:47–56

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK-112/S/293). The authors also would like to thank to the T.R. Prime Ministry State Planning Organization Foundation (Project Number: 09/DPT/001). Also the authors thank to Yalçın Erzurumlu for their technical assistance for the cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya İlem-Özdemir.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlem-Özdemir, D., Karavana, S.Y., Şenyiğit, Z.A. et al. Radiolabeling and cell incorporation studies of gemcitabine HCl microspheres on bladder cancer and papilloma cell line. J Radioanal Nucl Chem 310, 515–522 (2016). https://doi.org/10.1007/s10967-016-4805-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4805-6

Keywords

Navigation