Skip to main content
Log in

Comparative study on the radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid and molecular diluent for the extraction of thorium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid vis a vis molecular diluents have been evaluated for the extraction of thorium. The decrease in D Th value was found to follow the trend of irradiated (Xylene + ligand) > irradiated (ionic liquid + ligand). Ionic liquid was found to act as a sink to protect the ligand functionality from radiation damage. On gamma exposure, the other metal ions were also found to be co-extracted into organic phase from simulated high level waste solution of fast breeder reactor origin consequently reducing the selectivity. The reduction in selectivity on gamma exposure was found to be more in xylene than C8mimNTf2 based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Billard I, Ouadi A, Gaillard C (2011) Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem 400:1555–1566

    Article  CAS  Google Scholar 

  2. Binnemans K (2007) Lanthanides and actinides in ionic liquids. Chem Rev 107(6):2592–2614

    Article  CAS  Google Scholar 

  3. Cocalia VA, Gutowski KE, Rogers RD (2006) The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord Chem Rev 250:755–764

    Article  CAS  Google Scholar 

  4. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  Google Scholar 

  5. Miao W, Hang Chan T (2006) Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis. Acc Chem Res 39(12):897–908

    Article  CAS  Google Scholar 

  6. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  7. Mudring AV, Tang S (2010) Ionic liquids for lanthanide and actinide chemistry. EurJ Inorg Chem 18:2569–2581

    Article  Google Scholar 

  8. Sun X, Luo H, Dai S (2013) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  Google Scholar 

  9. Vasudeva Rao PR, Venkatesan KA, Rout A, Srinivasan TG, Nagarajan K (2012) Potential applications of room temperature ionic liquids for fission products and actinide. Sep Sci Technol 47(2012):204–222

    Article  CAS  Google Scholar 

  10. Dietz ML (2006) Ionic liquids as extraction solvents: where do we stand? Sep Sci Technol 41:2047–2063

    Article  CAS  Google Scholar 

  11. Cocalia VA, Jensen MP, Holbrey JD, Spear SK, Stepinski DC, Rogers RD (2005) Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans 11:1966–1971

    Article  Google Scholar 

  12. Rout A, Venkatesan KA, Srinivasan TG, Rao PRV (2012) Liquid–liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent. J Hazard Mater 221–222:62–67

    Article  Google Scholar 

  13. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Highly efficient diglycolamide-based task specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem Eur J 19(9):3230–3238

    Article  CAS  Google Scholar 

  14. Sengupta A, Mohapatra PK, Kadam RM, Manna D, Ghanty TK, Iqbal M, Huskens J, Verboom W (2014) Diglycolamide-functionalized task specific ionic liquids for nuclear waste remediation: extraction, luminescence, theoretical and EPR investigations. RSC Adv 4:46613–46623

    Article  CAS  Google Scholar 

  15. Ouadi A, Klimchuk O, Gaillard C, Billard I (2007) Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem 9:1160–1162

    Article  CAS  Google Scholar 

  16. Biswas S, Rupawate VH, Roy SB, Sahu M (2014) Task-specific ionic liquid tetraalkylammonium hydrogen phthalate as an extractant for U(VI) extraction from aqueous media. J Radioanal Nucl Chem 300(2):853–858

    Article  CAS  Google Scholar 

  17. Mohapatra PK, Kandwal P, Iqbal M, Huskens J, Murali MS, Verboom W (2013) A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans 42:4343–4347

    Article  CAS  Google Scholar 

  18. Dietz ML, Dzielawa JA, Laszak I, Young BA, Jensen MP (2003) Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids. Green Chem 5:682–685

    Article  CAS  Google Scholar 

  19. Dietz ML, Stepinski DC (2005) A ternary mechanism for the facilitated transfer of metal ions into room-temperature ionic liquids (RTILs): implications for the “greenness” of RTILs as extraction solvents. Green Chem 7:747–750

    Article  CAS  Google Scholar 

  20. Sengupta A, Mohapatra PK (2012) Extraction of radiostrontium from nuclear waste solution using crown ethers in room temperature ionic liquids. Supramol Chem 24(11):771–778

    Article  CAS  Google Scholar 

  21. Sengupta A, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2012) A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans 41(23):6970–6979

    Article  CAS  Google Scholar 

  22. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg Chem 52(5):2533–2541

    Article  CAS  Google Scholar 

  23. Sengupta A, Mohapatra PK, Iqbal M, Verboom W, Huskens J, Godbole SV (2012) Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a ‘green’ approach for radioactive waste processing. RSC Adv 2:7492–7500

    Article  CAS  Google Scholar 

  24. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Vasudeva Rao PR (2008) Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloys Compd 448(1–2):104–108

    Article  CAS  Google Scholar 

  25. Jagadeeswara Rao Ch, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2011) Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid. J Nucl Mater 408(1):25–29

    Article  Google Scholar 

  26. Shkrob IA, Marin TW, Hatcher JL, Cook AR, Szreder T, Wishart JF (2013) Radiation stability of cations in ionic liquids. 2. Improved radiation resistance through charge delocalization in 1-benzylpyridinium. J Phys Chem B 117(46):14385–14399

    Article  CAS  Google Scholar 

  27. Shkrob IA, Chemerisov SD (2007) The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems. J Phys Chem B 111(40):11786–11793

    Article  CAS  Google Scholar 

  28. Sinha RK, Kakodkar A (2006) Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Design 236(7–8):683–700

    Article  CAS  Google Scholar 

  29. Lung M, Gremm O (1998) Perspectives of the thorium fuel cycle. Nucl Eng Des 180(2):133–146

    Article  CAS  Google Scholar 

  30. Anantharaman K, Shivakumar V, Saha D (2008) Utilisation of thorium in reactors. J Nucl Mater 383(1–2):119–121

    Article  CAS  Google Scholar 

  31. Manchanda VK, Pathak PN (2004) Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep Purif Technol 35:85–103

    Article  CAS  Google Scholar 

  32. Krishnamurthy MV, Sampathkumar R (1992) Radiation-induced decomposition of the tributyl phosphate-nitric acid system: role of nitric acid. J Radioanal Nucl Chem Lett 166(5):421–429

    Article  CAS  Google Scholar 

  33. Parikh KJ, Pathak PN, Misra SK, Tripathi SC, Dakshinamoorthy A, Manchanda VK (2009) Radiolytic degradation studies on N, N-dihexyloctanamide (DHOA) under PUREX process conditions. Solv Extr Ion Exch 27(2):244–257

    Article  CAS  Google Scholar 

  34. Verdin D (1963) The radiolysis of the xylene isomers and ethylbenzene. J Phys Chem 67(6):1263–1267

    Article  CAS  Google Scholar 

  35. Allen D, Baston G, Bradley AE, Gorman T, Hailed A, Hamblett I, Hatter JE, Healey MJF, Hodgson B, Lewind R, Lovell KV, Newton B, Pitner WR, Rooneyg DW, Sanders D, Seddon KR, Sims HE, Thiedd RC (2002) An investigation of the radiochemical stability of ionic liquids. Green Chem 4:152–158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. A. Goswami, Head, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Sengupta, A., Murali, M.S. et al. Comparative study on the radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid and molecular diluent for the extraction of thorium. J Radioanal Nucl Chem 309, 615–625 (2016). https://doi.org/10.1007/s10967-015-4624-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4624-1

Keywords

Navigation