Skip to main content
Log in

Investigation of 90Sr(II) sorption onto graphene oxides studied by macroscopic experiments and theoretical calculations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The graphene oxides were applied as adsorbents to remove 90Sr(II) ions from aqueous solutions under different experimental conditions. The results showed that 90Sr(II) sorption was mainly dominated by ion exchange and outer-sphere surface complexation. The maximum sorption capacity (C smas) was calculated to be 3.84 × 10−4 mol/g at pH 5.8 and 20 °C, which was much higher than that of 90Sr(II) on other today’s materials. The thermodynamic parameters suggested that the sorption was an endothermic and spontaneous process. The theoretical calculation results indicated that COH and COC groups contributed to the coordination of Sr(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS study. Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  2. Yu SJ, Wang XX, Tan XL, Wang XK (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Front 2:593–612

    Article  CAS  Google Scholar 

  3. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS and EXAFS techniques. Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  4. Han RP, Zhang JH, Zou WH, Xiao HJ, Shi J, Liu HM (2006) Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column. J Hazard Mater 133:262–268

    Article  CAS  Google Scholar 

  5. Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  6. Tan X, Ren X, Chen C, Wang X (2014) Analytical approaches to the speciation of lanthanides on solid-water interfaces. TrAC-Trends Anal Chem 61:107–132

    Article  CAS  Google Scholar 

  7. Zhang ZL, Li L (2015) synthesis and characterization of whisker surface imprinted polymer and selective solid-phase extraction of trace Sr(II) from environment aqueous solution. Desalin Water Treat 54:2441–2451

    Article  CAS  Google Scholar 

  8. Wang TH, Payne TE, Harrison JJ, Teng SP (2015) Interactions involving strontium and various organic acids on the surface of bentonite (MX-80). J Radioanal Nucl Chem 304:95–105

    Article  CAS  Google Scholar 

  9. Yu SJ, Mei HY, Chen X, Tan XL, Ahmad M, Alsaedi A, Hayat T, Wang XK (2015) Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. J Mol Liq 203:39–46

    Article  CAS  Google Scholar 

  10. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23:3959–3963

    Article  CAS  Google Scholar 

  11. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  12. Zhao GX, Wen T, Yang X, Yang SB, Liao JL, Hu J, Shao DD, Wang XK (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  13. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    Article  CAS  Google Scholar 

  14. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK (2013) Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  Google Scholar 

  15. Hui Q, Liu HT, Gao Y (2015) Removal of Sr(II) from aqueous solutions using polyacrylamide modified graphene oxide composites. J Mol Liq 208:394–401

    Article  Google Scholar 

  16. Wang X, Yu JT (2015) Application of Fe3O4/graphene oxide composite for the separation of Cs(I) and Sr(II) from aqueous solution. J Radioanal Nucl Chem 303:807–813

    Article  CAS  Google Scholar 

  17. Wen T, Wu XL, Liu MC, Xing ZH, Wang XK, Xu AW (2014) Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites. Dalton Trans 43:7464–7472

    Article  CAS  Google Scholar 

  18. Chen H, Shao D, Li J, Wang X (2014) The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem Eng J 254:623–634

    Article  CAS  Google Scholar 

  19. Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour J (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    Article  CAS  Google Scholar 

  20. Yang S, Chen C, Chen Y, Li J, Wang D, Wang X, Hu W (2015) Competitive adsorption of Pb(II), Ni(II) and Sr(II) ions on graphene oxides: a combined experimental and theoretical study. ChemPlusChem 80:480–484

    Article  CAS  Google Scholar 

  21. Tan XL, Wang XK, Geckeis H, Rabung Th (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  23. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. J Chem Phys 123:064107

    Article  Google Scholar 

  24. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks G, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani GE, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, revision A. 02. Gaussian, Inc., Wallingford

    Google Scholar 

  26. Lee S, Anderson PR, Bunker GB, Karanfil C (2004) EXAFS study of Zn sorption mechanisms on montmorillonite. Environ Sci Technol 38:5426–5432

    Article  CAS  Google Scholar 

  27. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS and EXAFS techniques. Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  28. Ho YS, Wase DAJ, Forster CF (1996) Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol 17:71–77

    Article  CAS  Google Scholar 

  29. Ijagbemi CO, Baek MH, Kim DS (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166:538–546

    Article  CAS  Google Scholar 

  30. Mckay G, Poots VJP (1980) Kinetics and diffusion-process in color removal from effluent using wood as an adsorbent. J Chem Technol Biotechnol 30:279–292

    Article  CAS  Google Scholar 

  31. Bhattacharyya KG, Gupta SS (2008) Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Appl Clay Sci 41:1–9

    Article  CAS  Google Scholar 

  32. Weber WJ, Morris JC (1963) Kinetics of adsorption of carbon from solutions. J Sanit Eng Div Am Soc Civ Eng 89:31–63

    Google Scholar 

  33. Gupta SS, Bhattacharyya KG (2006) Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium deriviates. J Hazard Mater 128:247–257

    Article  Google Scholar 

  34. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  35. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643

    Article  CAS  Google Scholar 

  36. Abollino O, Giacomino A, Malandrino M, Mentasti E (2006) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236

    Article  Google Scholar 

  37. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  Google Scholar 

  38. Yang S, Ren X, Zhao G, Shi W, Montavon G, Grambow B, Wang X (2015) Competitive Sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: batch, modelling, EPR and XAFS studies. Geochim Cosmochim Acta 166:129–145

    Article  CAS  Google Scholar 

  39. Barbier F, Duc G, Petit-Ramel M (2000) Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface. Colloid Surf A Physicochem Eng Aspects 166:153–159

    Article  CAS  Google Scholar 

  40. Shao D, Li J, Wang X (2014) Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci China Chem 57:1449–1458

    Article  CAS  Google Scholar 

  41. Mercer KL, Tobiason JE (2008) Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO. Environ Sci Technol 42:3797–3802

    Article  CAS  Google Scholar 

  42. Reddad Z, Gerente C, Andres Y, Cloirec LP (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

  43. Song W, Shao D, Lu S, Wang X (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299

    Article  CAS  Google Scholar 

  44. Ding CC, Cheng WC, Sun YB, Wang XK (2015) Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim Cosmochim Acta 165:86–107

    Article  CAS  Google Scholar 

  45. Hayes KF, Leclie JO (1987) Modeling ionic strength effect on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 115:564–572

    Article  CAS  Google Scholar 

  46. Yang SB, Hu J, Chen CL, Shao DD, Wang XK (2011) Mutual effect of Pb(II) and humic acid adsorption onto multiwalled carbon nanotubes/poly(acrylamide) composites from aqueous solution. Environ Sci Technol 45:3621–3627

    Article  CAS  Google Scholar 

  47. Takahashi Y, Minai Y, Ambe H, Makide Y, Ambe F (1999) Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  48. Ozcan A, Oncu EM, Ozcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloid Surf A 277:90–97

    Article  Google Scholar 

  49. Zhao Y, Shao ZY, Chen CL, Hu J, Chen HL (2014) Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite. Appl Clay Sci 87:1–6

    Article  CAS  Google Scholar 

  50. Wang XX, Lu SS, Chen L, Li JX, Dai SY, Wang XK (2015) Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite-polyacrylamide composites. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4115-4

    Google Scholar 

  51. Tahir SS, Rauf N (2003) Thermodynamic studied of Ni(II) adsorption onto bentonite from aqueous solution. J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  52. Lan JH, Cao DP, Wang WC, Smit B (2010) Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano 4:4225–4237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. 41-130-36-HiCi. The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangxue Wang or Xiangke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Wang, X., Dai, S. et al. Investigation of 90Sr(II) sorption onto graphene oxides studied by macroscopic experiments and theoretical calculations. J Radioanal Nucl Chem 308, 721–732 (2016). https://doi.org/10.1007/s10967-015-4425-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4425-6

Keywords

Navigation