Skip to main content
Log in

Effect of the chemical nature of different transition metal ferrocyanides to entrap Cs

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Transition metal ferrocyanides are used since many years to selectively entrap radio-cesium from nuclear contaminated effluents. We investigate the cesium sorption properties on a series of ferrocyanides containing different transition metal ions (Ni2+, Co2+ and Cu2+) and outline the role of the chemical nature of the bivalent metal ion, the iron oxidation state, the presence of K+ in the structure and the grain size of the powders on the equilibrium time and efficiency of the Cs+ sorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Szoke S, Patzay G, Weiser L (2003) Radioachim Acta 91:229–232

    Article  CAS  Google Scholar 

  2. Rao SVS, Paul B, Lal KB, Narasimhan S, Ahmed J (2000) J Radioanal Nucl Chem 246:413–418

    Article  CAS  Google Scholar 

  3. Flouret J, Barre Y, Muhr H, Plasari E (2012) Chem Eng Sci 77:176–183

    Article  CAS  Google Scholar 

  4. Thakur P, Ballard S, Nelson R (2013) Sci Total Environ 458:577–613

    Article  CAS  Google Scholar 

  5. Peterson RA, Burgess JO, Walker DD, Hobbs DT, Serkiz SM, Barnes MJ, Jurgensen AR (2001) Sep Sci Technol 36:1307–1321

    Article  CAS  Google Scholar 

  6. Hritzko BJ, Walker DD, Wang NHL (2000) AIChE J 46:552–564

    Article  CAS  Google Scholar 

  7. Borai EH, Harjula R, Malinen L, Paajanen A (2009) J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  8. Ma B, Oh S, Shin WS, Choi SJ (2011) Desalination 276:336–346

    Article  CAS  Google Scholar 

  9. Reddy VN, Satyanarayana J, Kumar SS, Sivaiah MV, Krishna RM, Lakshminarayana S, Murthy GS (2004) Indian J Chem Technol 11:479–485

    CAS  Google Scholar 

  10. Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovic C (1998) J Solid State Chem 141:475–485

    Article  CAS  Google Scholar 

  11. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) J Solid State Chem 177:1817–1828

    Article  CAS  Google Scholar 

  12. Ayrault S, LoosNeskovic C, Fedoroff M, Garnier E, Jones DJ (1995) Talanta 42:1581–1593

    Article  CAS  Google Scholar 

  13. Han F, Zhang GH, Gu P (2013) J Radioanal Nucl Chem 295:369–377

    Article  CAS  Google Scholar 

  14. Mimura H, Kageyama N, Akiba K, Yoneya M, Miyamoto Y (1998) Solvent Extr Ion Exch 16:1013–1031

    Article  CAS  Google Scholar 

  15. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1998) J Radioanal Nucl Chem 237:97–102

    Article  CAS  Google Scholar 

  16. Ismail IM, El-Sourougy MR, Moneim NA, Aly HF (1999) J Radioanal Nucl Chem 240:59–67

    Article  CAS  Google Scholar 

  17. Delchet C, Tokarev A, Dumail X, Toquer G, Barre Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) RSC Adv 2:5707–5716

    Article  CAS  Google Scholar 

  18. Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Chem Eng J 236:A202–A211

    Article  CAS  Google Scholar 

  19. Okamura Y, Fujiwara K, Ishihara R, Sugo T, Kojima T, Umeno D, Saito K (2014) Radiat Phys Chem 94:119–122

    Article  CAS  Google Scholar 

  20. Ambashta RD, Wattal PK, Singh S, Bahadur D (2003) J Magn Magn Mater 267:335–340

    Article  CAS  Google Scholar 

  21. Ca DV, Cox JA (2004) Microchim Acta 147:31–37

    CAS  Google Scholar 

  22. Chang C-Y, Chau L-K, Hu W-P, Wang C-Y, Liao J-H (2008) Microporous Mesoporous Mater 109:505–512

    Article  CAS  Google Scholar 

  23. Lin YH, Fryxell GE, Wu H, Engelhard M (2001) Environ Sci Technol 35:3962–3966

    Article  CAS  Google Scholar 

  24. Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) J Hazard Mater 182:225–231

    Article  CAS  Google Scholar 

  25. Valsala TP, Joseph A, Shah JG, Raj K, Venugopal V (2009) J Nucl Mater 384:146–152

    Article  CAS  Google Scholar 

  26. Causse J, Tokarev A, Ravaux J, Moloney M, Barre Y, Grandjean A (2014) J Mater Chem A 2:9461–9464

    Article  CAS  Google Scholar 

  27. Turgis R, Arrachart G, Delchet C, Rey C, Barre Y, Pellet-Rostaing S, Guari Y, Larionova J, Grandjean A (2013) Chem Mater 25:4447–4453

    Article  CAS  Google Scholar 

  28. Hu B, Fugetsu B, Yu H, Abe Y (2012) J Hazard Mater 217–218:85–91

    Google Scholar 

  29. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) J Mater Chem 22:18261–18267

    Article  CAS  Google Scholar 

  30. Folch B, Guari Y, Larionova J, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guerin C (2008) New J Chem 32:273–282

    Article  CAS  Google Scholar 

  31. Du ZH, Jia MC, Wang XW (2013) J Radioanal Nucl Chem 298:167–177

    Article  CAS  Google Scholar 

  32. Balmaseda J, Reguera E, Rodriguez-Hernandez J, Reguera L, Autie M (2006) Microporous Mesoporous Mater 96:222–236

    Article  CAS  Google Scholar 

  33. de Tacconi NR, Rajeshwar K, Lezna RO (2003) Chem Mater 15:3046–3062

    Article  CAS  Google Scholar 

  34. Lejeune J, Brubach J-B, Roy P, Bleuzen A (2014) CR Chim 17:534–540

    Article  CAS  Google Scholar 

  35. Loosneskovic C, Fedoroff M (1989) Solvent Extr Ion Exch 7:131–158

    Article  CAS  Google Scholar 

  36. Loosneskovic C, Fedoroff M, Mecherri MO (1990) Analyst 115:981–987

    Article  CAS  Google Scholar 

  37. Haas PA (1993) Sep Sci Technol 28:2479–2506

    Article  CAS  Google Scholar 

  38. Ho YS (2006) J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  39. Mimura H, Lehto J, Harjula R (1997) J Nucl Sci Technol 34:607–609

    Article  CAS  Google Scholar 

  40. Lehto J, Harjula R, Wallace J (1987) J Radioanal Nucl Chem 111:297–304

    Article  CAS  Google Scholar 

  41. Vlasselaer S, Dolieslager W, Dhont M (1976) J Inorg Nucl Chem 38:327–330

    Article  CAS  Google Scholar 

  42. Freundlich HZ (1906) J Phys Chem 57:385–470

    CAS  Google Scholar 

  43. Desta MB (2013) J Thermodyn 2013:6

    Google Scholar 

  44. Langmuir I (1916) J Am Chem Soc 40:1361–1368

    Article  Google Scholar 

  45. Ho YS, Porter JF, McKay G (2002) Water Air Soil Pollut 141:1–33

    Article  CAS  Google Scholar 

  46. Hameed BH, Din ATM, Ahmad AL (2007) J Hazard Mater 141:819–825

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Cyrielle Rey for its help for the analysis of the compounds and of the Cs from solution; Bruno Corso for XRD experiments; Johann Ravaux for SEM experiments; and Véronique Dubois for its help for ICP-AES analysis. This work was supported financially by CEA, University of Montpellier and MEMFIS ANR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Grandjean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandjean, A., Delchet, C., Causse, J. et al. Effect of the chemical nature of different transition metal ferrocyanides to entrap Cs. J Radioanal Nucl Chem 307, 427–436 (2016). https://doi.org/10.1007/s10967-015-4098-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4098-1

Keywords

Navigation