Skip to main content
Log in

Separation and recovery of ruthenium: a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The chemistry of the noble metal fission product, ruthenium is very complex due to the existence of many oxidation states in addition to forming a large number of co-ordination complexes. In the PUREX process for the separation of U and Pu from the spent nuclear fuels from fast breeder reactors, owing to the high volatile nature of RuO4 problems arise not only during the extraction stages but also in the treatment of high active liquid waste and subsequent vitrification. As this volatile RuO4 can deposit in cooler parts, there is an increase in the radiation field due to the presence of 106Ru. The problem is very acute in the reprocessing of fast reactor fuels due to the increased concentration of ruthenium in the spent fuel. In nitric acid medium Ru can exist in various nitroso nitrate complexes and nitroso complexes are more stable than nitrates. The nitrates are non-extractable by the solvent TBP; however, they are extractable to a higher degree by DBP (the primary degradation product of TBP). The extractability of Ru nitrates into the solvent is inhibited by high acid content, temperature and prolonged hold-up time. Nevertheless, these factors promote the volatilization of Ru as RuO4. The volatilization is enhanced by the addition of phosphate ions, but is suppressed by phosphite or hypophosphite ions. Thus, it would be advantageous if ruthenium is removed so that not only the purity of the product (Pu) is improved, but also the problem related to volatilisation can be resolved. High molecular weight amines (tertiary amines) capable of forming co-ordinate bonds are reported to be ideal extractants for Ru. Gas phase separation is an effective method for the recovery of Ru from catalysts, lead button and from other platinum group metals. Separation and pre-concentration of noble metals can be accomplished from non-metals by simple sorbents like coconut shell activated carbon to complicated chelating resins, aromatic polymers and zeolites. In the electro-oxidation of active Ru from nitroso salts, Pd was found to interfere and removal of Pd prior to oxidation of Ru is recommended. Redox catalysts such as Ag2+ and Ce4+ are found to play a prominent role in the electro-oxidation of Ru. Though, various methods and extractants are reported in the literature for the separation of Ru, R&D is being pursued for the removal of Ru during aqueous reprocessing of spent fuels using extractants and methods which are conducive to plant conditions. Hence, an exhaustive survey of literature was made and the different methods reported for the removal of Ru with emphasis towards reprocessing applications are discussed in this report as a review. Attempts made by the authors in separating Ru from simulated waste solution are also included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Motojima K (1990) U.S. Patent 4938895

  2. Holgye Z (1987) J Radioanal Nucl Chem Lett 117:353

    Article  CAS  Google Scholar 

  3. Eichler B, Zude F, Fan W, Trautmann N, Herrmann G (1992) Radiochim Acta 56:133

    CAS  Google Scholar 

  4. Seddon EA, Seddon KR (1984) The chemistry of ruthenium, Monograph 19. Elsevier, Amsterdam, p 51

    Google Scholar 

  5. Balcerzak M, Swiecicka E (1996) Talanta 43:471

    Article  CAS  Google Scholar 

  6. Balcerzak M (2002) Critical Rev Anal Chem 32:181

    Article  CAS  Google Scholar 

  7. Scargill D, Lyon CE, Large NR, Fletcher JM (1965) J Inorg Nucl Chem 27:161

    Article  CAS  Google Scholar 

  8. Sczek AA, Steindler MJ (1978) Atomic Energy Rev 16:4

    Google Scholar 

  9. Wilson AS (1960) J Chem Eng Data 5:521

    Article  CAS  Google Scholar 

  10. Sato T (1989) J Radioanal Nucl Chem 129:77

    Article  CAS  Google Scholar 

  11. Agarwal R, Venugopal V (2006) J Nucl Mater 359:122

    Article  CAS  Google Scholar 

  12. Mun C, Cantrel L, Madic C (2006) Nucl Technol 156:332

    CAS  Google Scholar 

  13. Bramman JI, Sharpe RM, Dixson R (1971) J Nucl Mater 38:226

    Article  CAS  Google Scholar 

  14. Kleykamp H (1973) J Nucl Mater 47:271

    Article  CAS  Google Scholar 

  15. Dienst W, Kleykamp H, Muhling M, Reiser H, Steiner H, Thummler F, Wedemeyer H, Weimar P (1977) Proceedings of the nuclear power and its fuel cycle, vol 3, IAEA, Vienna, IAEA-CN-36/108, p 493

  16. Ohmichi T, Suzuki Y, Maeda A, Shiozawa K, Handa M (1984) Report JEARI-M-84-161, p 35

  17. Oi N (1970) J Nucl Mater 34:227

    Article  CAS  Google Scholar 

  18. Kurosaki K, Tanaka K, Osaka M, Ohishi Y, Muta H, Uno M, Shinsuke Yamanaka S (2011) Prog Nucl Sci Technol 2:5

    Google Scholar 

  19. Martin JE (2006) A hand book of physics for radiation protection, 2nd edn. Wiley-VCH, Weinheim, p 775

    Book  Google Scholar 

  20. Amrani N, Boucenna A (2007) Ann Nucl Energy 34:703

    Article  CAS  Google Scholar 

  21. Sakurai T, Hinatsu Y, Takahusi A, Fujisawa G (1985) J Phys Chem 89:1892

    Article  CAS  Google Scholar 

  22. Mun C, Ehrhardt JJ, Lambert J, Madic C (2007) Appl Surf Sci 253:7613

    Article  CAS  Google Scholar 

  23. Holm J, Glanneskog H, Ekberg C (2009) J Nucl Mater 392:55

    Article  CAS  Google Scholar 

  24. Krause Ch, Luckscheiter B (1991) J Mater Res 6:2535

    Article  CAS  Google Scholar 

  25. Clark WE, Godbee HW (1964) US Patent 3,120,493

  26. Kubota K, Yamana H, Takeda S (1985) US Patent 4,526,658

  27. Wallace RM, Aiken SC (1965) US Patent 3,208,819

  28. Holgye Z, Krivanek M (1978) J Radioanal Chem 42:133

    Article  CAS  Google Scholar 

  29. Sato T (1990) J Radioanal Nucl Chem 139:25

    Article  CAS  Google Scholar 

  30. Ayabe T, Tatsugae R (1989) Chem Abstr 110:143304c

    Google Scholar 

  31. Ayabe T, Tatsugae R (1989) Chem Abstr 110:139105W

    Google Scholar 

  32. Motojima K (1989) J Nucl Sci Technol 26:358

    Article  CAS  Google Scholar 

  33. Pravati Swain, Annapoorani S, Srinivasan R, Mallika C, Kamachi Mudali U, Natarajan R (2012) Proceedings of the DAE-BRNS biennial international symposium on emerging trends in separation science and technology (SESTEC-2012), Mumbai, p 106

  34. Grehl M, Meyer H, Schafer D (2002) US Patent 6,475,448B2

  35. Haas M, Weuta P, Wolf A, Schlueter OF–K (2008) US Patent 0287282A1

  36. Isa I, Takahashi T (1977) US Patent 4,002,470

  37. DePablo RS, Harrington DE, Bramstedt WR (1979) US Patent 4,132,569

  38. Khushboo Singh, Sonar NL, Valsala TP, Kulkarni Y, Tessy Vincent, Amar Kumar (2012) Proceedings of the DAE-BRNS biennial international symposium on emerging trends in separation science and technology (SESTEC-2012), Mumbai, p 116

  39. Beamish FE (1966) Talanta 13:773

    Article  CAS  Google Scholar 

  40. Moore RL (1960) J Inorg Nucl Chem 14:38

    Article  CAS  Google Scholar 

  41. Gandon R, Boust D, Bedue O (1993) Radiochim Acta 61:41

    CAS  Google Scholar 

  42. Samanta SK, Theyyunni TK (1994) Report BARC-E/012

  43. Kore SG, Prasad V, Singh US, Yeotikar RG, Mishra A, Ali SS (2001) 12th annual conference on Indian Nuclear Society (INSAC-2001), Indore

  44. Sonar NL, Mishra PK, Kore SG, Sonavane MS, Kulkarni Y, Raj K, Manchanda VK (2009) Sep Sci Technol 44:506

    Article  CAS  Google Scholar 

  45. Thiers R, Graydon W, Beamish FE (1948) Anal Chem 20:831

    Article  CAS  Google Scholar 

  46. Allan WJ, Beamish FE (1952) Anal Chem 24:1569

    Article  CAS  Google Scholar 

  47. Diamantatos A (1997) Anal Chim Acta 91:281

    Article  Google Scholar 

  48. Naito K, Matsui T, Tanaka Y (1986) J Nucl Sci Technol 23:540

    Article  CAS  Google Scholar 

  49. Jensen GA (1984) Nucl Technol 65:305

    CAS  Google Scholar 

  50. Matsui T, Hoshikawa T, Naito K (1990) Solid State Ionics 40(41):993

    Google Scholar 

  51. Matsui T, Naito K (1989) J Nucl Sci Technol 26:1102

    Article  CAS  Google Scholar 

  52. Naito K, Matsui T, Nakahira H, Kitagawa M, Okada H (1991) J Nucl Mater 184:30

    Article  CAS  Google Scholar 

  53. Arai K, Ayabe M, Hatta M, Myochin M, Wada Y, Takahashi T (1995) Prog Nucl Energy 29:235

    Article  CAS  Google Scholar 

  54. Bogl W, Bachmann K (1974) Radiochem Radioanal Lett 17:239

    Google Scholar 

  55. Matschob V, Bachmann K (1979) J Inorg Nucl Chem 41:141

    Article  Google Scholar 

  56. Hyman HH, Leader GR (1959) US Patent 2,894,816

  57. Fitoussi R, Lours S, Musikas C (1981) US Patent 4,282,112

  58. Kiba T, Miura A, Sugioka Y (1963) Bull Chem Soc Jpn 36:663

    Article  CAS  Google Scholar 

  59. Fieberg MM, Edwards RI (1978) US Patent 4,105,442

  60. Lingen J, Shiyan L, Cheng LG, Jingxuan S, Manchang R (1989) Solvent Extract Ion Exchange 7:613

    Article  Google Scholar 

  61. Dhami PS, Naik PW, Poonam Jagasia, Thomas G, Tripathi SC, Gandhi PM, Janardan P (2012) Proceedings of the DAE-BRNS biennial international symposium on emerging trends in separation science and technology (SESTEC-2012), Mumbai, p 97

  62. Gaikwad AP, Mahamuni SV, Pawar BG, Mandhare AM, Mane CP, Kolekar SS, Anuse MA (2012) Proceedings of the DAE-BRNS biennial international symposium on emerging trends in separation science and technology (SESTEC-2012), Mumbai, p 133

  63. Healy TV (1967) US Patent 3,326,811

  64. Grummitt WE, Hardwick WH (1961) US Patent 2,967,209

  65. Epperson CE, Landolt RR, Kessler WV (1976) Anal Chem 48:979

    Article  CAS  Google Scholar 

  66. Marczenko Z, Balcerzak M (1979) Anal Chim Acta 109:123

    Article  CAS  Google Scholar 

  67. Jaya S, Ramakrishna TV (1984) Bull Chem Soc Jpn 57:267

    Article  CAS  Google Scholar 

  68. Al - Bazi SJ, Chow A (1984) Anal Chem Acta 157:83

    Article  CAS  Google Scholar 

  69. Tagashira S, Murakami Y, Nishiyama M, Harada N, Sasaki Y (1996) Bull Chem Soc Jpn 69:3195

    Article  CAS  Google Scholar 

  70. Shetty SS, Turel ZR (1989) J Radioanal Nucl Chem Lett 135:51

    Article  CAS  Google Scholar 

  71. Bahrainwala TM, Turel ZR (1998) J Radioanal Nucl Chem 237:175

    Article  CAS  Google Scholar 

  72. Mhaske A, Dhadke P (2002) Hydrometallurgy 63:207

    Article  CAS  Google Scholar 

  73. Dskovic V, Vojkovic V, Antonic T (2005) Croat Chem Acta 78:617

    Google Scholar 

  74. Kedari CS, Coll MT, Fortuny A, Goralska E, Sastre AM (2005) Sep Sci Technol 40:1927

    Article  CAS  Google Scholar 

  75. Panigrahi S, Dash T, Sarangi K, Nathsarma KC (2009) Chemical engineering in nuclear technology series–1, national seminar on solvent extraction (CHEMENT-2009) Kalpakkam, p C-5

  76. Kartil J, Menel J, Moravec A (1974) Chem Abstr 80:90008n

    Google Scholar 

  77. Wasey W, Bansal RK, Satake M, Puri BK (1983) Bull Chem Soc Jpn 56:3603

    Article  CAS  Google Scholar 

  78. Sharma RK (1996) Bull Chem Soc Jpn 66:1084

    Article  Google Scholar 

  79. El-Shahawi MS, Almehdi M (1995) J Chromatogr A 697:185

    Article  CAS  Google Scholar 

  80. Polak P (1977) Radiochim Acta 24:193

    CAS  Google Scholar 

  81. Lee SH, Chung H (2003) Sep Sci Technol 38:3459

    Article  CAS  Google Scholar 

  82. Liu QP, Wang YC, Liu JC, Cheng JK (1993) Anal Sci 9:523

    Article  CAS  Google Scholar 

  83. Zhang XS, Shi L, Zhang L, You LF, Lin CS (1997) J Chromatogr A 789:485

    Article  CAS  Google Scholar 

  84. Singh N, Mehrotra M, Rastogi K, Srivastava TN (1985) Analyst 110:71

    Article  CAS  Google Scholar 

  85. Floreancig A, Nicolas F (1993) US Patent 5,219,540

  86. Mimura H, Ohta H, Akiba K, Onodera Y (2002) J Nucl Sci Technol 39:655

    Article  CAS  Google Scholar 

  87. Schmuckler G (1988) US Patent 4,885,143

  88. Grant RA (2007) US Patent 7,163,570B2

  89. Sonar NL, Sonavane MS, Valsala TP, Kulkarni Y, Kanwar Raj, Manchanda VK (2009) Sep Sci Technol 44:3753

    Article  CAS  Google Scholar 

  90. Siddhanta S, Das HR (1985) Talanta 32:457

    Article  CAS  Google Scholar 

  91. Akatsu E, Yonezawa C, Motojima K (1979) J Nucl Energy 6:399

    Article  CAS  Google Scholar 

  92. Dey P, Madhumita Bag, Basu S (2012) Proceedings of the DAE-BRNS biennial international symposium on emerging trends in separation science and technology (SESTEC-2012), Mumbai, p 45

  93. Motoki R, Motoishi S, Izumo M, Onoma K, Sato T (1986) US Patent 4,622,176

  94. Tikhomirova TI, Fadeeva VI, Kudryavtsev GV (1992) Anal Chim Acta 257:109

    Article  CAS  Google Scholar 

  95. Berak L, Uher E, Marhol M (1975) Atomic Energy Rev 13:325

    CAS  Google Scholar 

  96. Blum JM, Jaumier JJ, Verot JL (1973) Chem Abstr 79:1395393g

    Google Scholar 

  97. Yoshio K, Shozo I (1989) Chem Abstr 111:63499a

    Google Scholar 

  98. Pankaj S, Bhardwaj D, Renu T, Radha T (2007) J Radioanal Nucl Chem 274:281

    Article  Google Scholar 

  99. Foos J, Lemaire M, Guy A, Draye M, Chomel R, Deloge A (1995) US Patent 5,417,942

  100. Lietzke MH, Griess JC Jr (1953) J Electrochem Soc 100:434

    Article  CAS  Google Scholar 

  101. Kobayashi Y, Yamatera H, Okuno H (1965) Bull Chem Soc Jpn 38:1911

    Article  CAS  Google Scholar 

  102. Motojima K (1990) J Nucl Sci Technol 27:262

    Article  CAS  Google Scholar 

  103. Yoneya M, Kawamura K, Torata S–I, Takahashi T (1995) US Patent 5,437,847

  104. Mousset F, Bedioui F, Eysseric C (2004) Electrochem Commun 6:351

    Article  CAS  Google Scholar 

  105. Pravati Swain, Annapoorani S, Srinivasan R, Mallika C, Kamachi Mudali U, Natarajan R (2013) 10th international symposium on advances in electrochemical science and technology (ISAEST-10), Chennai, India

  106. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2009) Electrochim Acta 54:6747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. R.V. Subba Rao, Reprocessing Group for fruitful discussions during the preparation of this review. This review forms a part of the thesis to be submitted by Ms. Pravati Swain to Homi Bhabha National Institute, Mumbai for the award of Ph.D. degree in Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mallika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, P., Mallika, C., Srinivasan, R. et al. Separation and recovery of ruthenium: a review. J Radioanal Nucl Chem 298, 781–796 (2013). https://doi.org/10.1007/s10967-013-2536-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2536-5

Keywords

Navigation