Skip to main content
Log in

Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria and their by-products, such as iron sulfides, are widely distributed in groundwater and sediments, and can affect subsurface aqueous chemistry. Here we show the catalytic reduction of hexavalent uranium by FeS particles, which were largely generated by the activities of Desulfovibrio desulfuricans and D. vulgaris in anaerobic condition. Characterization of FeS particles by X-ray diffraction and high-resolution transmission electron microscopy revealed the presence of mackinawite having thin and flexible platy sheets with 0.5-nm lamellar spacing. This biogenic phase mediated abiotic reduction of U(VI) to U(IV) which was confirmed by UV–Vis absorption spectroscopy. The U conversion occurred through surface catalysis that involved adsorption of aqueous U(VI)–carbonate complexes (predominantly UO2(CO3) 4−3 ) onto the mackinawite, but the transformed uranium was then released and remained in suspended form in the solution phase. This surface catalysis and subsequent U(IV) remobilization has not been reported as a pathway to occur under sulfate-reducing conditions. Our results suggest that the iron sulfide solid, which is characteristic of conductive property, is very sensitive and variable depending on the electron supplying and transferring environment, negatively affecting the surface uranium to be strongly stabilized and fixed on the FeS surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lloyd JR, Renshaw JC (2005) Curr Opin Biotechnol 16:254–260

    Article  CAS  Google Scholar 

  2. Francis AJ (2007) J Alloys Compd 444–445:500–505

    Article  Google Scholar 

  3. Lovley DR, Phillips EJP (1992) Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  4. Madrakian T, Afkhami A, Rahimi M (2012) J Radioanal Nucl Chem 292:597–602

    Article  CAS  Google Scholar 

  5. Gao L, Yang Z, Shi K, Wang X, Guo Z, Wu W (2010) J Radioanal Nucl Chem 284:519–526

    Article  CAS  Google Scholar 

  6. Yi Z, Lian B (2012) J Radioanal Nucl Chem 293:321–329

    Article  CAS  Google Scholar 

  7. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Nature 350:413–416

    Article  CAS  Google Scholar 

  8. Abdelouas A, Lu Y, Lutze W, Nuttall HE (1998) J Contam Hydrol 35:217–233

    Article  CAS  Google Scholar 

  9. Fredrickson JK, Zachara JM, Kennedy DW, Liu C, Duff MC, Hunter DB, Dohnalkova A (2002) Geochim Cosmochim Acta 66:3247–3262

    Article  CAS  Google Scholar 

  10. Boyanov MI, Fletcher KE, Kwon MJ, Rui X, O’Loughlin EJ, Löffler FE, Kemner KM (2011) Environ Sci Technol 45:8336–8344

    Article  CAS  Google Scholar 

  11. Gorby YA, Lovley DR (1992) Environ Sci Technol 26:205–207

    Article  CAS  Google Scholar 

  12. Abdelouas A, Lutze W, Gong W, Nuttall EH, Strietelmeier BA, Travis BJ (2000) Sci Total Environ 250:21–35

    Article  CAS  Google Scholar 

  13. Benning LG, Wilkin RT, Barnes HL (2000) Chem Geol 167:25–51

    Article  CAS  Google Scholar 

  14. Renock D, Gallegos T, Utsunomiya S, Hayes K, Ewing RC, Becker U (2009) Chem Geol 268:116–125

    Article  CAS  Google Scholar 

  15. Gramp JP, Bigham JM, Jones FS, Tuovinen OH (2010) J Hazard Mater 175:1062–1067

    Article  CAS  Google Scholar 

  16. Sani RK, Peyton BM, Amonette JE, Geesey GG (2004) Geochim Cosmochim Acta 68:2639–2648

    Article  CAS  Google Scholar 

  17. Liger E, Charlet L, Cappellen PV (1999) Geochim Cosmochim Acta 63:2939–2955

    Article  CAS  Google Scholar 

  18. Davies W, Gray W (1964) Talanta 11:1203–1211

    Article  CAS  Google Scholar 

  19. Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR, Braithwaite A (2000) Environ Sci Technol 34:1062–1068

    Article  CAS  Google Scholar 

  20. Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C, Steele H, Collison D, Vaughan DJ, Pattrick RAD, Reed WA, Moyes LN (2004) J Environ Radio 74:211–219

    Article  CAS  Google Scholar 

  21. O’Loughlin EJ, Kelly SD, Kemner KM (2010) Environ Sci Technol 44:1656–1661

    Article  Google Scholar 

  22. Veeramani H, Alessi DS, Suvorova EI, Lezama-Pacheco JS, Stubbs JE, Sharp JO, Dippon U, Kappler A, Bargar JR, Bernier-Latmani R (2011) Geochim Cosmochim Acta 75:2512–2528

    Article  CAS  Google Scholar 

  23. Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) PLoS Biol 4:1324–1333

    Article  CAS  Google Scholar 

  24. Payne RB, Casalot L, Rivere T, Terry J, Larsen L, Giles BJ, Wall JD (2004) Archiv Microbiol 181:398–406

    Article  CAS  Google Scholar 

  25. Lee SY, Baik MH, Choi JW (2010) Environ Sci Technol 44:8409–8414

    Article  CAS  Google Scholar 

  26. Wersin P, Hochella MF, Persson P, Redden G, Leckie JO, Harris DW (1994) Geochim Cosmochim Acta 58:2829–2843

    Article  CAS  Google Scholar 

  27. Scott TB, Riba TO, Allen GC (2007) Geochim Cosmochim Acta 71:5044–5053

    Article  CAS  Google Scholar 

  28. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Appl Environ Microbiol 69:5884–5891

    Article  CAS  Google Scholar 

  29. Lovley DR, Phillips EJP (1992) Appl Environ Microbiol 58:850–856

    CAS  Google Scholar 

  30. Bargar JR, Bernier-Latmani R, Giammar DE, Tebb BM (2008) Elements 4:407–412

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Arokiasamy J. Francis and Dr. Wooyong Um for his helpful discussions and reviews on this manuscript. This work was supported by the Nuclear Research and Development Program of National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yeop Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Baik, M.H., Cho, HR. et al. Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. J Radioanal Nucl Chem 296, 1311–1319 (2013). https://doi.org/10.1007/s10967-013-2438-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2438-6

Keywords

Navigation