Skip to main content
Log in

Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes (MWCNTs) were modified by nitric acid solution and then used to study the adsorption of cesium from aqueous solution using a batch technique under ambient conditions. As produced and oxidized MWCNTs were characterized by nitrogen adsorption/desorption, Boehm’s titration method and Fourier transform infrared spectroscopy. The physical properties of MWCNTs such as functional groups, total number of acid sites and specific surface area were greatly improved after oxidation, and these were responsible for more sorption of cesium from aqueous solution and made them more dispersible in water. The adsorption of cesium ions as a function of contact time, initial concentration of cesium, pH, ionic strength and oxidized MWCNT concentrations was also investigated. The results showed that cesium adsorption percentage strongly depended on the pH value, oxidized MWCNT content and on the solution ionic strength. Kinetic data indicated that the adsorption process achieved equilibrium within 80 min. Equilibrium data for as produced and oxidized MWCNTs was well described by both Freundlich and Langmuir isotherms. The dominant mechanism of cesium adsorption on oxidized MWCNTs may be mainly attributed to ion exchange. This study suggests that oxidized MWCNTs can be a promising candidate for the removal of cesium from nuclear waste solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    Article  CAS  Google Scholar 

  4. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  5. Sun YF, Zhang AM, Yin Y, Dong YM, Cui YC, Zhang X (2007) The investigation of adsorptive performance on modified multi-walled carbon nanotubes by mechanical ball milling. Mater Chem Phys 101:30–34

    Article  CAS  Google Scholar 

  6. Xia XH, Jia ZH, Yu Y, Liang Y, Wang Z, Ma LL (2007) Preparation of multi-walled carbon nanotubes supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O2. Carbon 45:717–721

    Article  CAS  Google Scholar 

  7. Yang K, Wang X, Zhu L, Xing B (2007) Competitive sorption of pyrene, phenanthrene, and naphthalene on multi walled carbon nanotubes. Environ Sci Technol 40:5804–5810

    Article  CAS  Google Scholar 

  8. Kombarakkaran J, Clewett CFM, Pietra T (2007) Ammonia adsorption on multi-walled carbon nanotubes. Chem Phys Lett 441:282–285

    Article  CAS  Google Scholar 

  9. Du D, Wang M, Zhang J, Cai J, Tu H, Zhang A (2008) Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem Commun 10:85–89

    Article  CAS  Google Scholar 

  10. Chin CJM, Shih LC, Tsai HJ, Liu TK (2007) Adsorption of o-xylene and p-xylene from water by multi-walled carbon nanotubes. Carbon 45:1254–1260

    Article  CAS  Google Scholar 

  11. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C (2003) Competitive adsorption of Pb2+, Cu2+, Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  12. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multi walled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  13. Yang S, Li J, Shao D, Hu J, Wang K (2009) Adsorption of nickel (II) on oxidized multiwall carbon nanotubes. J Hazard Mater 166:109–116

    Article  CAS  Google Scholar 

  14. Xu D, Tan X, Chen C, Wang X (2008) Removal of lead (II) from aqueous solution by oxidized multi walled carbon nanotubes. J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  15. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of copper (II) onto as-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  16. Tuzen M, Soylak M (2007) Multiwall carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219–225

    Article  CAS  Google Scholar 

  17. Lu C, Chiu H, Liu C (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    Article  CAS  Google Scholar 

  18. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Sorption of Amersium-243 to multiwall carbon nanotubes. Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  19. Chen CL, Li XL, Wang XK (2007) Application of oxidized multiwall carbon nanotubes for thorium (IV) adsorption. Radiochim Acta 95:261–266

    Article  CAS  Google Scholar 

  20. Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–30

    Article  CAS  Google Scholar 

  21. Danilin LD, Drozhzhin VS (2007) Inorganic sorbents based on modified microspheres for treatment of liquid radioactive waste. Radiochemistry 49:283–286

    Article  CAS  Google Scholar 

  22. Al Hamarneh I, Wreikat A, Toukan K (2003) Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu radionuclides in Jordanian soil samples. J Environ Radio 67:53–67

    Article  CAS  Google Scholar 

  23. Peterson S, Wymer RG (1963) Chemistry in nuclear technology. Addisson-Wesley Publishing Co Inc, USA

    Google Scholar 

  24. Dow KH, Bucholtz JD, Iwamoto RR, Fieler VK, Hilderley LJ (1997) Nursing care in radiation oncology, 2nd edn. W. B. Saunders Co, Orlando

    Google Scholar 

  25. Elvers B, Hawkins B, Schulz S (1990) Radionuclides, ullmann’s encyclopedia of industrial chemistry. VCH Publishers, New York

    Google Scholar 

  26. Andress E, Delaplane K, Schuler G (1998) Food irradiation, cooperative extension service publication. University of georgia, Athens, GA

    Google Scholar 

  27. Ebner AD, Ritter JA, Navratil JD (2001) Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite. Ind Eng Chem Res 40:1615–1623

    Article  CAS  Google Scholar 

  28. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    Article  CAS  Google Scholar 

  29. Yavari R, Huang YD, Mostofizadeh A (2010) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285:703–710

    Article  CAS  Google Scholar 

  30. Kiselev AV (1962) Adsorption properties of hydrophobic surface. J colloid Interface Sci 28:430–442

    Article  Google Scholar 

  31. Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  32. Li YH, Wang S, Luan Z (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  33. Kandaha MI, Meunier JL (2006) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 129:123–129

    Article  CAS  Google Scholar 

  34. David WM, Erickson CL, Johnston CT, Delfino JJ, Porter JE (1999) Quantitative Fourier transform infrared spectroscopic investigation of humic substance functional group composition. Chemosphere 38:2913–2928

    Article  Google Scholar 

  35. Lu C, Chung YL, Chang KF (2006) Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J Hazard Mater 138:304–310

    Article  CAS  Google Scholar 

  36. Pradhan BK, Sandle NK (1999) Effect of different oxidizing agents on the surface properties of activated carbons. Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  37. Ovejero G, Sotelo JL, Romero MD, Rodrıguez A, Ocana MA, Rodriıguez G (2006) Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. Ind Eng Chem Res 45:2206–2212

    Article  CAS  Google Scholar 

  38. Chen C, Li X, Zhao D, Tan X, Wang X (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A 302:449–454

    Article  CAS  Google Scholar 

  39. Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865

    Article  CAS  Google Scholar 

  40. Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81:1932–1940

    Article  CAS  Google Scholar 

  41. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  42. Hua J, Chena C, Zhub X, Wanga X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542–1550

    Article  CAS  Google Scholar 

  43. Rivera-Utrilla J, Sancher-Polo M (2003) Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ-cation interactions. Water Res 37:3325–3340

    Google Scholar 

  44. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Pur Technol 58:224–231

    Article  CAS  Google Scholar 

  45. Reddad Z, Gerente C, Andres Y, Cloirec LP (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

  46. Li YH, Wang S, Zhang X, Wei J, Xu C, Luan Z (2003) Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bulletin 38:469–476

    Article  CAS  Google Scholar 

  47. Hanafi A (2010) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. J At Mol Sci 1:292–300

    Google Scholar 

  48. Mishra SP, Dubey SS, Tiwari D (2004) Ion-exchangers in radioactive waste management, Part XIV: removal behavior of hydrous titanium oxide and sodium titanate for Cs(I). J Radioanal Nucl Chem 261:457–463

    Article  CAS  Google Scholar 

  49. Yavari R, Ahmadi SJ, Huang YD, Khanchi AR, Bagheri G, He JM (2009) Synthesis, characterization and analytical application of a new inorganic cation exchanger—titanium(IV) molybdophosphate. Talanta 77:1179–1184

    Article  CAS  Google Scholar 

  50. Mimura H (1997) Ion exchange of cesium on potassium cobalt hexacyanoferrate(1I). J Nucl Sci Technol 34:184–489

    Google Scholar 

  51. Vibhute RG, Khopkar SM (1991) Solvent extraction separation of cesium with dibenzo-24-crown-8 from picrate solution. J Radioanal Nucl Chem 152:487–496

    Article  CAS  Google Scholar 

  52. Todd TA, Romanovskiy VN (2005) A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste. Radiochemistry 47:398–402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, R., Huang, Y.D. & Ahmadi, S.J. Adsorption of cesium (I) from aqueous solution using oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 287, 393–401 (2011). https://doi.org/10.1007/s10967-010-0909-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0909-6

Keywords

Navigation