Skip to main content
Log in

Kinetics of AgI precipitation from AgCl as affected by background electrolyte

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Iodide retention by AgCl, a potential sorbent in high-level waste (HLW) storage systems, was determined. The kinetics and steady state sorption of iodide were determined in single and mixed electrolytes of NaNO3, and NaCl at ionic strengths of 25 and 50 mM. Iodide retention involved the conversion of AgCl to AgI. This conversion increased rapidly within 0.02 hours, and retention maxima of 0.92 and 1.0 mol·l·mol−1 Ag occurred for low and high ionic strengths, respectively. These short-term studies indicated that AgCl would be an effective scavenger of I in HLW containment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bloch, H. Möller, Z. Phys. Chem., 152 (1931) 245.

    CAS  Google Scholar 

  2. D. W. Blowes, C. J. Ptacek, S. G. Benner, J. Contam. Hydrol., 45 (2000) 123.

    Article  CAS  Google Scholar 

  3. D. W. Blowes, K. R. Waybrant, C. J. Ptacek, Environ. Sci. Technol., 36 (2002) 1349.

    Article  CAS  Google Scholar 

  4. G. Burley, J. Chem. Phys., 38 (1963) 2807.

    Article  CAS  Google Scholar 

  5. G. Burley, J. Chem. Phys., 68 (1964) 1111.

    Article  CAS  Google Scholar 

  6. L. B. Davis, L. H. Adams, Science, 146:3643 (1964) 519.

    Article  CAS  Google Scholar 

  7. Department of Energy (DOE), 2004, (On line). Available at www.ocrwm.doe.gov/ymp/about/safety.shtml

  8. DIONEX Corporation, The Determination of Iodide in Brine, 1998, Application Note 122; Sunnyvale, Ca.

  9. M. C. Duff, C. Amrhein, J. Soil Sci Soc. Am. (l)., 60 (1996) 1393.

    Article  CAS  Google Scholar 

  10. H. Frob, H. Bottcher, B. Muller, A. Winzer, J. Imag. Sci. Techn., 37 (1993) 564.

    Google Scholar 

  11. J. Georgopoulou, K. Fytas, H. Soto, B. Evangelou, Environ. Geol., 28 (1996) 61.

    Article  CAS  Google Scholar 

  12. S. Glaus, G. Calzaferri, J. Phys. Chem., B 103 (1999) 5622.

    Article  CAS  Google Scholar 

  13. C. Goessens, D. Schryvers, J. Van Landuyt, S. Amelinckx, A. Verbeeck, R. De Keyzer, J. Crystal Growth, 110 (1990) 930.

    Article  Google Scholar 

  14. R. J. Hunter, Foundations of Colloid Science, Vol. I, Oxford University Press, Oxford, 1987, 360.

    Google Scholar 

  15. K. J. Hutchison, D. Hesterberg, J. W. Chou, Soil Sci. Soc. Am. J., 65 (2001) 704.

    Article  CAS  Google Scholar 

  16. D. I. Kaplan, R. J. Serne, K. E. Parker, I. V. Kutnyakov, Environ. Sci. Technol., 34 (2000) 399.

    Article  CAS  Google Scholar 

  17. J. L. Kovach, Nucl. Safety, 23 (1982) 44.

    CAS  Google Scholar 

  18. E. Krausmann, Y. Drossinos, J. Nucl. Mater., 264 (1999) 113.

    Article  CAS  Google Scholar 

  19. W. L. Lindsay, Chemical Equilibria in Soils, John Wiley and Sons, New York, 1979, p. 302.

    Google Scholar 

  20. A. J. Majumdar, R. Roy, J. Phys. Chem., 63 (1959) 1858.

    Article  CAS  Google Scholar 

  21. S. V. Mattigod, G. E. Fryxell, R. J. Serne, K. E. Parker, Pacific Northwest National Laboratory, Richland Washington, 2003.

  22. D. S. Mckinney, M. S. Yim, D. Hesterberg, Am. Nucl. Soc. Trans. J. (Fuel Cycle and Waste Management: General), 28(2000) 68.

    Google Scholar 

  23. M. C. Morris, H. F. Mcmurdie, E. H. Evans, J. de Groot, B. Paretzkin, Powder Diffraction Data, Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1976, p. 9–399 and 9–374.

  24. E. J. Nowak, J. L. Krumhansl, Sandia National Lab Report (SAND), 83–1293, 1983, p. 98.

    Google Scholar 

  25. P. R. Prager, Acta Cryst., A30 (1974) 369.

    Google Scholar 

  26. C. A. Rains, J. R. Ray, P. Vashishta, Phys. Rev., B44 (1991) 9228.

    Google Scholar 

  27. W. A. Schulze, Y. S. Cho, V. R. W. Amarakoon, J. Am. Ceram. Soc., 82 (1999) 3186.

    Google Scholar 

  28. G. Sposito, The Surface Chemistry of Soils, Oxford University Press, New York, 1989, p. 153.

    Google Scholar 

  29. J. Tallon, Phys. Rev. Lett., 57 (1986) 2427.

    Article  CAS  Google Scholar 

  30. K. V. Ticknor, Y. H. Cho, J. Radioanal. Nucl. Chem., 140 (1990) 75.

    Article  CAS  Google Scholar 

  31. USGS, Office of Civilian Waste Management, 1998, (On line). Available at www.ymp.gov

  32. L. van Middlesworth, J. Handl, P. Johns, J. Radioanal. Nucl. Chem., 245 (2000) 447.

    Article  Google Scholar 

  33. K. Volka, B. Schrader, Appl. Spectr., 51 (1997) 1119.

    Article  Google Scholar 

  34. H. Wilman, Appl. Phys. Chem., 3 (1939) 323.

    Google Scholar 

  35. M. D. Wunderly, D. W. Blowes, E. O. Frind, C. J. Ptacek, Water Resour. Res., 32 (1996) 3173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinney, D.S., Hesterberg, D.L. Kinetics of AgI precipitation from AgCl as affected by background electrolyte. J Radioanal Nucl Chem 273, 289–297 (2007). https://doi.org/10.1007/s10967-007-6849-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-6849-0

Keywords

Navigation