Skip to main content
Log in

Synthesis and characterization of polyvinylidene fluoride/functionalized silicon carbide nanocomposite membrane for water treatment

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study was aimed at developing an exclusive nanocomposite membrane with improved properties for salt removal using low-cost, biocompatible SiC nanoparticles. These nanoparticles were functionalized using APDEMS to make them more dispersible in polymer matrix. The membranes were synthesized after blending different weight% of nanoparticles 0.5 to 2 with PVDF using phase inversion technique. TEM images revealed an average diameter of nanoparticles of 30–50 nm and in the carbon spectrum by XPS analysis, confirming successful functionalization of SiC (f-SiC), evidenced by a new peak at 286.5 eV, pertinent to the C-N bond. FESEM, EDX, and AFM revealed that the dispersion of the f-SiC nanoparticles was well across the PVDF matrix, with a rougher surface. Thermogravimetric analysis (TGA) showed that membrane with f-SiC was more thermally stable and had minimum leaching of nanoparticles which was also supported by EDX results. The f-SiC composite membrane provided 98.3% rejection of BSA compared to 73% rejection for pure PVDF membrane. The static and dynamic antifouling test proved that f-SiC composite membrane was better than pure PVDF. The water contact angle increased by 13.6%, contrary to the original PVDF membrane. The mean pore size and porosity of the composite f-SiC-PVDF membrane increased to 0.21 μm and 86.5% from 0.12 μm and 80% for pure PVDF, respectively. PVDF-2% f-SiC membrane was adjudicated the most suitable with 18.0 L/m2h permeate flux and 99.0% salt rejection of 0.5 M NaCl solution at 55 °C temperature gradient in the direct contact membrane distillation (DCMD) test. These superior properties of membranes make them a promising candidate for desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C (2018) Antifouling membrane surface construction : chemistry plays a critical role. J Memb Sci 551:145–171. https://doi.org/10.1016/j.memsci.2018.01.039

    Article  CAS  Google Scholar 

  2. Lu X, Peng Y, Ge L, Lin R, Zhu Z, Liu S (2016) Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. J Memb Sci 505:61–69. https://doi.org/10.1016/J.MEMSCI.2015.12.042

    Article  CAS  Google Scholar 

  3. Mertens M, Van Dyck T, Van Goethem C, Gebreyohannes AY, Vankelecom IFJ (2018) Development of a polyvinylidene di fl uoride membrane for nano fi ltration 557:24–29. https://doi.org/10.1016/j.memsci.2018.04.020

    Article  CAS  Google Scholar 

  4. Kang G, Cao Y (2014) Application and modi fi cation of poly ( vinylidene fl uoride ) ( PVDF ) membranes – a review 463:145–165. https://doi.org/10.1016/j.memsci.2014.03.055

  5. Sherazi TA, Khan Y, Li S, Ali S, Naqvi R, Cui Z (2018) Author ’ s Accepted Manuscript. J Memb Sci. https://doi.org/10.1016/j.memsci.2018.02.063

    Article  Google Scholar 

  6. Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes 375:1–27. https://doi.org/10.1016/j.memsci.2011.03.014

    Article  CAS  Google Scholar 

  7. Lü X, Wang X, Guo L, Zhang Q, Guo X, Li L (2016) Preparation of PU modified PVDF antifouling membrane and its hydrophilic performance. J Memb Sci 520:933–940. https://doi.org/10.1016/j.memsci.2016.08.018

    Article  CAS  Google Scholar 

  8. Zhang X, Shen L, Lang W, Wang Y (2017) Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process. J Memb Sci 535:188–199. https://doi.org/10.1016/j.memsci.2017.04.038

    Article  CAS  Google Scholar 

  9. Sun H, Wu P (2018) Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. J Memb Sci 564:394–403. https://doi.org/10.1016/J.MEMSCI.2018.07.044

    Article  CAS  Google Scholar 

  10. Asempour F, Akbari S, Bai D, Emadzadeh D, Matsuura T, Kruczek B (2018) Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes. J Memb Sci 563:470–480. https://doi.org/10.1016/j.memsci.2018.05.070

    Article  CAS  Google Scholar 

  11. Alrowaili ZA, Ali AM, Al-Baradi AM et al (2022) A significant role of MOO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–LI2O glasses - optical and Quantum Electronics. In: SpringerLink https://doi.org/10.1007/s11082-021-03447-0. Accessed 20 Mar 2023

  12. Al-Buriahi MS, Hessien M, Alresheedi F, Al-Baradi AM, Alrowaili ZA, Kebaili I, Olarinoye IO (2022) ZnO– Bi2O3 nanopowders: fabrication, structural, optical, and radiation shielding properties. Ceram Int 48(3):3464–3472

  13. Alzahrani JS, Sharma A, Nazrin SN, Alrowaili ZA, Al-Buriahi MS (2022) Optical and radiation shielding effectiveness of a newly fabricated WO3 doped TeO2–B2O3 glass system. Rad Phys Chem 193

  14. Alrowaili ZA, Taha TA, Ibrahim M, Saron KMA, Sriwunkum C, Al-Baradi AM, Al-Buriahi MS (2021) Synthesis and characterization of B2O3-Ag3PO4-ZnO-Na2O glasses for optical and radiation shielding applications. Optik 248

  15. Bandyopadhyay P, Park WB, Layek RK, Uddin ME, Kim NH, Kim H-G, Lee JH (2016) Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film. J Memb Sci 500:106–114. https://doi.org/10.1016/J.MEMSCI.2015.11.029

    Article  CAS  Google Scholar 

  16. Xia S, Ni M (2015) Preparation of poly ( vinylidene fl uoride ) membranes with graphene oxide addition for natural organic matter removal. J Memb Sci 473:54–62. https://doi.org/10.1016/j.memsci.2014.09.018

    Article  CAS  Google Scholar 

  17. Zhao L, Lu X, Wu C, Zhang Q (2016) Flux enhancement in membrane distillation by incorporating AC particles into PVDF polymer matrix. J Memb Sci 500:46–54. https://doi.org/10.1016/j.memsci.2015.11.010

    Article  CAS  Google Scholar 

  18. Zhang J, Wang Z, Wang Q, Pan C, Wu Z (2017) Comparison of antifouling behaviours of modified PVDF membranes by TiO 2 sols with di ff erent nanoparticle size : Implications of casting solution stability 525:378–386. https://doi.org/10.1016/j.memsci.2016.12.021

  19. Liang H, Wu Q, Wan L, Huang X, Xu Z (2014) Thermally induced phase separation followed by in situ sol – gel process : a novel method for PVDF / SiO 2 hybrid membranes. J Memb Sci 465:56–67. https://doi.org/10.1016/j.memsci.2014.03.068

    Article  CAS  Google Scholar 

  20. Liu F, Abed MRM, Li K (2011) Preparation and characterization of poly ( vinylidene fluoride ) ( PVDF ) based ultrafiltration membranes using nano -Al 2 O 3 366:97–103. https://doi.org/10.1016/j.memsci.2010.09.044

  21. Alpatova A, Meshref M, McPhedran KN, Gamal El-Din M (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Memb Sci 490:227–235. https://doi.org/10.1016/J.MEMSCI.2015.05.001

  22. Lv J, Zhang G, Zhang H, Zhao C, Yang F (2018) Applied Surface Science Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 440:1091–1100. https://doi.org/10.1016/j.apsusc.2018.01.256

    Article  CAS  Google Scholar 

  23. Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fl uoride ultra fi ltration membranes. J Memb Sci 458:1–13. https://doi.org/10.1016/j.memsci.2014.01.050

    Article  CAS  Google Scholar 

  24. Ayyaru S, Ahn Y (2017) Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity , permeability , and antifouling of PVDF nanocomposite ultra fi ltration membranes 525:210–219. https://doi.org/10.1016/j.memsci.2016.10.048

  25. Li Y, Huang S, Zhou S, Fane AG, Zhang Y (2018) Enhancing water permeability and fouling resistance of polyvinylidene fl uoride membranes with carboxylated nanodiamonds 556:154–163. https://doi.org/10.1016/j.memsci.2018.04.004

    Article  CAS  Google Scholar 

  26. Li X, Sotto A, Li J, Van Der Bruggen B (2017) Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. J Memb Sci 524:502–528. https://doi.org/10.1016/j.memsci.2016.11.040

    Article  CAS  Google Scholar 

  27. Han D, Mei H, Xiao S, Dassios KG, Cheng L (2018) Journal of the European Ceramic Society Review article A review on the processing technologies of carbon nanotube / silicon carbide composites. J Eur Ceram Soc 38:3695–3708. https://doi.org/10.1016/j.jeurceramsoc.2018.04.033

    Article  CAS  Google Scholar 

  28. Eom J, Kim Y, Raju S (2013) Journal of Asian Ceramic Societies Processing and properties of macroporous silicon carbide ceramics : a review. Integr Med Res 1:220–242. https://doi.org/10.1016/j.jascer.2013.07.003

    Article  Google Scholar 

  29. Teker K (2016) Microelectronic Engineering Photoresponse characteristics of silicon carbide nanowires. MEE 162:79–81. https://doi.org/10.1016/j.mee.2016.05.002

    Article  CAS  Google Scholar 

  30. Zeng Z, Shao W, Chen H, Hu B, Chen W, Li H, Ran L (2017) Changes and challenges of photovoltaic inverter with silicon carbide device ☆. Renew Sustain Energy Rev 78:624–639. https://doi.org/10.1016/j.rser.2017.04.096

    Article  CAS  Google Scholar 

  31. Cheng H, Ye F, Wu J, Shi W, Leng S, Wu S (2018) In situ synthesis and mechanism of mullite-silicon carbide composite ceramics for solar thermal storage. Ceram Int 44:18541–18550. https://doi.org/10.1016/j.ceramint.2018.07.076

    Article  CAS  Google Scholar 

  32. Zhou N, Liu S, Zhang Y, Fan L, Cheng Y, Wang Y, Liu Y, Chen P, Ruan R (2018) Bioresource Technology Silicon carbide foam supported ZSM-5 composite catalyst for microwave- assisted pyrolysis of biomass. Bioresour Technol 267:257–264. https://doi.org/10.1016/j.biortech.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  33. Shcherban ND (2017) Journal of Industrial and Engineering Chemistry Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J Ind Eng Chem 50:15–28. https://doi.org/10.1016/j.jiec.2017.02.002

    Article  CAS  Google Scholar 

  34. Zhang L, Jiang W, Ai W, Chen L, Wang T (2018) Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures. J Nucl Mater 505:249–254. https://doi.org/10.1016/j.jnucmat.2018.04.005

    Article  CAS  Google Scholar 

  35. Ferraris M, Hinoki T, Huang Q (2018) Fusion applications *. J Nucl Mater 511:544–555. https://doi.org/10.1016/j.jnucmat.2018.06.017

    Article  CAS  Google Scholar 

  36. Hulsey S, Absar S, Choi H (2018) Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nano fi bers. J Manuf Process 34:776–784. https://doi.org/10.1016/j.jmapro.2018.03.050

    Article  Google Scholar 

  37. Saini I, Sharma A, Dhiman R, Chandak N, Aggarwal S, Sharma PK (2017) Functionalized SiC nanocrystals for tuning of optical, thermal, mechanical and electrical properties of polyvinyl alcohol. Thin Solid Films 628:176–183. https://doi.org/10.1016/j.tsf.2017.02.061

    Article  CAS  Google Scholar 

  38. Joyeeta B et al (2021) Tuning permeation characteristics of cellulose acetate membrane embedded with raw and amine-functionalized silicon carbide nanoparticle for oil-water separation. J Water Process Eng 41:102019. ScienceDirect https://doi.org/10.1016/j.jwpe.2021.102019

  39. Niu Y, Zhang X, Zhao J, Tian Y, Li Y, Yan X (2014) Preparation, characterization and properties of amine-functionalized silicon carbide/polyimide composite films. RSC Adv 4:28456–28462. https://doi.org/10.1039/c4ra02769h

    Article  CAS  Google Scholar 

  40. Cao JP, Zhao J, Zhao X, Hu GH, Dang ZM (2013) Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites. J Appl Polym Sci 130:638–644. https://doi.org/10.1002/app.39186

    Article  CAS  Google Scholar 

  41. Rajaeian B, Heitz A, Tade MO, Liu S (2015) Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J Memb Sci 485:48–59. https://doi.org/10.1016/j.memsci.2015.03.009

    Article  CAS  Google Scholar 

  42. Yuliwati E et al (2011) Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation. Desalination, vol. 283:206–13. ScienceDirect. https://doi.org/10.1016/j.desal.2011.02.037

  43. Wang L et al (2021) Enhancing water permeability and antifouling performance of thin–film composite membrane by tailoring the support layer. Desalination 516:115193. ScienceDirect. https://doi.org/10.1016/j.desal.2021.115193

  44. Ohyanagi M (2019) Chapter 5 - Simultaneous transformation and consolidation of stacking-sequence disordered sic without sintering additives. Spark Plasma Sintering, edited by Giacomo Cao et al., Elsevier, pp. 127–52. ScienceDirect. https://doi.org/10.1016/B978-0-12-817744-0.00005-2

  45. Jiang T, Li Z, Xiao P, Liu J, Liu P, Yu S, Xiao T (2019) Surface & Coatings Technology E ff ect of di ff erent chemical treatments on hydroxyapatite formation of carbon fi bers reinforced carbon and SiC dual matrices composites 357:153–160. https://doi.org/10.1016/j.surfcoat.2018.09.052

    Article  CAS  Google Scholar 

  46. Lysenko V, Wolf JP, Bonacina L, Souteyrand E, Chevolot Y (2017) RSC Advances multiphoton imaging nanoprobes for cancer-cell- speci fi c labeling †, 27361–27369. https://doi.org/10.1039/c7ra03961a

  47. Alekseev S, Shamatulskaya E, Volvach M, Gryn S, Korytko D, Bezverkhyy I, Iablokov V, Lysenko V (2017) Size and surface chemistry tuning of silicon carbide nanoparticles 13561–13571. https://doi.org/10.1021/acs.langmuir.7b02784

  48. Shang X, Zhu Y, Li Z (2017) Applied Surface Science Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele. Appl Surf Sci 394:169–177. https://doi.org/10.1016/j.apsusc.2016.10.102

    Article  CAS  Google Scholar 

  49. Shimoda K, Koyanagi T (2014) Colloids and Surfaces A : Physicochemical and Engineering Aspects Surface properties and dispersion behaviors of SiC nanopowders. Colloids Surfaces A Physicochem Eng Asp 463:93–100. https://doi.org/10.1016/j.colsurfa.2014.09.013

    Article  CAS  Google Scholar 

  50. Li C, Feng D, Wang X, Li Z, Zhu Y (2016) Applied Surface Science A thermochemical approach to enhance hydrophobicity of SiC / SiO 2 powder using ␥ -methacryloxypropyl trimethoxy silane and octylphenol polyoxyethylene ether (7). Appl Surf Sci 360:45–51. https://doi.org/10.1016/j.apsusc.2015.10.189

    Article  CAS  Google Scholar 

  51. Guo J, Song K, Wu B, Zhu X, Zhang B, Shi Y (2017) RSC Advances Atomically thin SiC nanoparticles obtained via ultrasonic treatment to realize enhanced catalytic alkaline and acidic media †. RSC Adv 7:22875–22881. https://doi.org/10.1039/C7RA01701D

    Article  CAS  Google Scholar 

  52. Chen F, Shi X, Chen X, Chen W (2018) An iron (II) phthalocyanine/poly(vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation. J Memb Sci 552:295–304. https://doi.org/10.1016/j.memsci.2018.02.030

    Article  CAS  Google Scholar 

  53. Wang B, Lai Z (2012) Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions. J Memb Sci 405–406:275–283. https://doi.org/10.1016/J.MEMSCI.2012.03.020

    Article  Google Scholar 

  54. Xu F, Kim J, Lee S (2016) Particle-induced viscous fingering. J Nonnewton Fluid Mech 238:92–99. https://doi.org/10.1016/J.JNNFM.2016.06.014

    Article  CAS  Google Scholar 

  55. Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817. https://doi.org/10.1021/ie101928r

    Article  CAS  Google Scholar 

  56. Leaper S, Abdel-Karim A, Faki B, Luque-Alled JM, Alberto M, Vijayaraghavan A, Holmes SM, Szekely G, Badawy MI, Shokri N, Gorgojo P (2018) Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. J Memb Sci 554:309–323. https://doi.org/10.1016/j.memsci.2018.03.013

    Article  CAS  Google Scholar 

  57. Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang (2018) Properties and applications of the β phase poly(vinylidene fluoride) 1–27. https://doi.org/10.3390/polym10030228

  58. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389. https://doi.org/10.1039/c7ra01267e

    Article  CAS  Google Scholar 

  59. Yang CL, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH, Li ZH, Li WJ, Liu HY, Xiao QZ, Lei GT, Ding YH (2015). Author ’ s accepted manuscript. https://doi.org/10.1016/j.memsci.2015.08.036

    Article  Google Scholar 

  60. Meng N, Priestley RCE, Zhang Y, Wang H, Zhang X (2016) The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J Memb Sci 501:169–178. https://doi.org/10.1016/J.MEMSCI.2015.12.004

    Article  CAS  Google Scholar 

  61. Wu X, Zhao B, Wang L, Zhang Z, Zhang H, Zhao X, Guo X (2016) Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. J Memb Sci 520:120–129. https://doi.org/10.1016/J.MEMSCI.2016.07.025

    Article  CAS  Google Scholar 

  62. Wang Q, Wang X, Wang Z, Huang J, Wang Y (2013) PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J Memb Sci 442:57–64. https://doi.org/10.1016/j.memsci.2013.04.026

    Article  CAS  Google Scholar 

  63. Wang Y, Lin H, Xiong Z, Wu Z, Wang Y, Xiang L, Wu A, Liu F (2016) A silane-based interfacial crosslinking strategy to design PVDF membranes with versatile surface functions. J Memb Sci 520:769–778. https://doi.org/10.1016/j.memsci.2016.08.029

    Article  CAS  Google Scholar 

  64. Bazzar M, Ghaemy M, Alizadeh R (2012) Novel fluorescent light-emitting polymer composites bearing 1,2,4-triazole and quinoxaline moieties: reinforcement and thermal stabilization with silicon carbide nanoparticles by epoxide functionalization. Polym Degrad Stab 97:1690–1703. https://doi.org/10.1016/j.polymdegradstab.2012.06.018

    Article  CAS  Google Scholar 

  65. Laghaei M, Sadeghi M, Ghalei B, Shahrooz M (2016) The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes: Polyethersulfone/MCM-41. J Memb Sci 513:20–32. https://doi.org/10.1016/J.MEMSCI.2016.04.039

    Article  CAS  Google Scholar 

  66. Zhang J, Xin Q, Li X, Yun M, Xu R, Wang S, Li Y, Lin L, Ding X, Ye H, Zhang Y (2019) Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J Memb Sci 570–571:343–354. https://doi.org/10.1016/j.memsci.2018.10.075

    Article  CAS  Google Scholar 

  67. Razzaghi MH, Safekordi A, Tavakolmoghadam M, Rekabdar F, Hemmati M (2014) Morphological and separation performance study of PVDF/CA blend membranes. J. Memb Sci 470:547–557. https://doi.org/10.1016/j.memsci.2014.07.026

  68. Demirel E, Zhang B, Papakyriakou M, Xia S, Chen Y (2017) Fe 2 O 3 nanocomposite PVC membrane with enhanced properties and separation performance. J Memb Sci 529:170–184. https://doi.org/10.1016/j.memsci.2017.01.051

    Article  CAS  Google Scholar 

  69. Song D, Xu J, Fu Y, Xu L, Shan B (2016) Polysulfone/sulfonated polysulfone alloy membranes with an improved performance in processing mariculture wastewater. Chem Eng J 304:882–889. https://doi.org/10.1016/J.CEJ.2016.07.009

    Article  CAS  Google Scholar 

  70. Ali khan S, Akram S, Rashid A, Rehan ZA, Khan SB, Drioli E (2022) Synthesis, characterization, and bioactivity evaluation of PES-Ni-SiO2 nanocomposite membranes cum stabilization of Ag NPs for nitrophenols hydrogenation and dyes discoloration studies. Sustain Chem Pharm 30:100887, ISSN 2352–5541. https://doi.org/10.1016/j.scp.2022.100887

  71. Schoell SJ, Sachsenhauser M, Oliveros A, Howgate J, Stutzmann M, Brandt MS, Frewin CL, Saddow SE, Sharp ID (2013) Organic functionalization of 3C-SiC surfaces. https://doi.org/10.1021/am302786n

  72. Fan H, Peng Y (2012) Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem Eng Sci 79:94–102. ISSN 0009–2509. https://doi.org/10.1016/j.ces.2012.05.052

  73. Wang J, Zheng L, Wu Z, Zhang Y, Zhang X (2016) Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation. J Membrane Sci 497:183–193. ISSN 0376–7388. https://doi.org/10.1016/j.memsci.2015.09.024

  74. Fadhil S, Marino T, Makki HF, Alsalhy QF, Blefari S, Macedonio F, Di Nicolò E, Giorno L, Drioli E, Figoli A (2016) Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem Eng Process: Process Intens 102:16–26. ISSN 0255–2701. https://doi.org/10.1016/j.cep.2016.01.007

  75. Grasso G, Galiano F, Yoo MJ, Mancuso R, Park HB, Gabriele B, Figoli A, Drioli E (2020) Development of graphene-PVDF composite membranes for membrane distillation. J Membrane Sci 604:118017. ISSN 0376–7388. https://doi.org/10.1016/j.memsci.2020.118017

  76. Dhand V, Hong SK, Li L, Kim JM, Kim SH, Rhee KY, Lee HW (2019) Fabrication of robust, ultrathin and light weight, hydrophilic, PVDF-CNT membrane composite for salt rejection. Compos Part B Eng 160:632–643. https://doi.org/10.1016/j.compositesb.2018.12.106

    Article  CAS  Google Scholar 

  77. Hou C, Pang Z, Xie S, Wong NH, Sunarso J, Peng Y (2023) Enhanced permeability and stability of PVDF hollow fiber membrane in DCMD via heat-stretching treatment. Separation and Purification TechnolVolume 304:122325. ISSN 1383–5866. https://doi.org/10.1016/j.seppur.2022.122325

  78. Wang Z-P, Zhou J-Y, Liu Q, Hou C, Xie S, Yin M-J, An Q-F (2022) A novel polysulfate hollow fiber membrane with antifouling property for ultrafiltration application. J Membrane Sci 664:121088. ISSN 0376–7388. https://doi.org/10.1016/j.memsci.2022.121088

  79. Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J (2023) Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Separation Purification Technol 308:122911. ISSN 1383–5866. https://doi.org/10.1016/j.seppur.2022.122911

  80. Lyly LHT, Ooi BS, Lim JK, Derek CJC, Low SC (2021) Correlating the membrane surface energy to the organic fouling and wetting of membrane distillation at elevated temperature. J Environ Chem Eng 9(1):104627. ISSN 2213–3437. https://doi.org/10.1016/j.jece.2020.104627

  81. Lee HK, Ray SS, Huyen DTT, Kang W, Kwon Y-N (2021) Chemical and surface engineered superhydrophobic patterned membrane with enhanced wetting and fouling resistance for improved membrane distillation performance. J Membrane Sci 629:119280. ISSN 0376–7388. https://doi.org/10.1016/j.memsci.2021.119280

  82. Ashoor BB, Mansour S, Giwa A, Dufour V, Hasan SW (2016) Principles and application of direct contact membrane distillation (DCMD): a comprehensive review. Desalination 398:222–246. ISSN 0011–9164. https://doi.org/10.1016/j.desal.2016.07.043

  83. Dumée LF, Gray S, Duke M, Sears K, Schütz J, Finn N (2013) The role of membrane surface energy on direct contact membrane distillation performance. Desalination 323:22–30, ISSN 0011–9164. https://doi.org/10.1016/j.desal.2012.07.012

Download references

Acknowledgements

We thank the CoE, Advanced Materials, National Institute of Technology Durgapur, from which we received help characterizing our customized membranes on a payment basis. We want to take this opportunity to thank Dr. Ganesh Ch. Sahoo, CSIR-CGCRI Kolkata; Dr. Sudip Chakraborty, University of Calabria, Italy; Dr. Mrinal Kanti Mandal, Chemical Engineering Department; and Prof. Joydeep Maity, Metallurgical & Materials Engineering Department, NIT Durgapur, who extend their kind support in analytical part for the current research.

Funding

For growing the research work infrastructure, we received a grant from the Department of Science & Technology and Biotechnology, Govt. of West Bengal, containing Memo No. 49 (Sanc.)/ST/P/S&T/15G-6/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Sikder.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, J., Marchio, L., Adhikari, U. et al. Synthesis and characterization of polyvinylidene fluoride/functionalized silicon carbide nanocomposite membrane for water treatment. J Polym Res 30, 246 (2023). https://doi.org/10.1007/s10965-023-03624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03624-7

Keywords

Navigation