Skip to main content
Log in

The role of calcium crosslinking and glycerol plasticizing on the physical and mechanical properties of superabsorbent

Alginate/Quince Seed Gum films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, highly absorbent films based on alginate and Quince Seed Gum (QSG) were fabricated using ionic crosslinking. FTIR analysis was conducted to show crosslinking and network formation. The tensile test revealed an increase in crosslinking time and CaCl2 concentration reduced elongation and increased tensile strength and Young's modulus, but glycerol augmented elongation without a substantial effect on mechanical strength. According to the swelling test, (0.5% w/v CaCl2-2 min) was the optimum crosslinking condition and led to a maximum swelling degree (about 1700%). Exceptional swelling resulted from the high number of hydrophilic groups on the surface of QSG and repulsion forces between negatively charged biopolymers, leading to a great water absorption capacity. Crosslinking reduced the water solubility of films but did not affect Water vapor transmission (WVT). Because of the hydrophilicity of glycerol, adding higher amounts of glycerol decreased the contact angle, reduced the swelling degree, and increased the solubility and WVT of films. Thermogravimetric analysis (TGA) results exhibited that crosslinking imparted a positive effect on thermal stability, while the addition of glycerol adversely influenced it. The properties of Alginate – QSG films demonstrated that they are suitable candidates for biomedical applications like wound healing and drug delivery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Kurt A, Toker OS, Tornuk F (2017) Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. Int J Biol Macromol 102:1035–1044. https://doi.org/10.1016/j.ijbiomac.2017.04.081

    Article  CAS  Google Scholar 

  2. Fatullayeva S, Tagiyev D, Zeynalov N et al (2022) Recent advances of chitosan-based polymers in biomedical applications and environmental protection. J Polym Res 29. https://doi.org/10.1007/s10965-022-03121-3

  3. Falguera V, Quintero JP, Jiménez A et al (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303. https://doi.org/10.1016/j.tifs.2011.02.004

    Article  CAS  Google Scholar 

  4. Xia G-X, Wu Y-M, Bi Y-F et al (2021) Antimicrobial properties and application of polysaccharides and their derivatives. Chin J Polym Sci 39:133–146. https://doi.org/10.1007/s10118-021-2506-2

    Article  CAS  Google Scholar 

  5. da Silva MA, Bierhalz ACK, Kieckbusch TG (2009) Alginate and pectin composite films crosslinked with Ca 2+ ions: Effect of the plasticizer concentration. Carbohydr Polym 77:736–742. https://doi.org/10.1016/j.carbpol.2009.02.014

    Article  CAS  Google Scholar 

  6. Szekalska M, Puciłowska A, Szymańska E et al (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016. https://doi.org/10.1155/2016/7697031

  7. Wang H, Ying X, Liu J et al (2017) Specific rebinding of protein imprinted polyethylene glycol grafted calcium alginate hydrogel with different crosslinking degree. J Polym Res 24. https://doi.org/10.1007/s10965-017-1256-x

  8. de Farias YB, Coutinho AK, Tupuna-Yerovi DS, de Rios A, O, (2021) Incorporation of norbixin in biodegradable alginate films crosslinked with Ca2+: Pro-oxidant action. J Appl Polym Sci 138:49876. https://doi.org/10.1002/app.49876

    Article  CAS  Google Scholar 

  9. Kondolot Solak E, Kaya S, Asman G (2021) Preparation, characterization, and antibacterial properties of biocompatible material for wound healing. J Macromol Sci Part A Pure Appl Chem 58:709–716. https://doi.org/10.1080/10601325.2021.1929315

    Article  CAS  Google Scholar 

  10. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 24. https://doi.org/10.1007/s10965-020-02231-0/Published

  11. Rezagholi F, Hashemi SMB, Gholamhosseinpour A, Sherahi MH, Mohammad Ali Hesarinejad MTA (2018) Characterizations and rheological study of the purified polysaccharide extracted from quince seeds. J Sci Food Agric 99:143–151. https://doi.org/10.1002/jsfa.9155

    Article  CAS  Google Scholar 

  12. Hussain MA, Muhammad G, Haseeb MT, Tahir MN (2019) Quince Seed Mucilage: A Stimuli-Responsive/Smart Biopolymer. Funct Biopolym 1–22. https://doi.org/10.1007/978-3-319-95990-0_19

  13. Fadhilah S, Aisyah N, Mohd N, Mat KA (2019) Sodium alginate film : the effect of crosslinker on physical and mechanical properties Sodium alginate film : the effect of crosslinker on physical and mechanical properties. IOP Publishing 509. https://doi.org/10.1088/1757-899X/509/1/012063

  14. Treenate P, Monvisade P (2017) Crosslinker Effects on Properties of Hydroxyethylacryl Chitosan / Sodium Alginate Hydrogel Films. Macromol Symp 372:147–153. https://doi.org/10.1002/masy.201600141

    Article  CAS  Google Scholar 

  15. Karim A (2011) Physical and mechanical properties of sago starch – alginate films incorporated with calcium chloride. Int Food Res J 18:1027–1033

    Google Scholar 

  16. Saarai A, Kasparkova V, Sedlacek T, Sáha P (2011) A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing. Recent Researches in Geography, Geology, Energy, Environment and Biomedicine 384–389. https://doi.org/10.5555/2046174.2046243

  17. Costa MJ, Marques AM, Pastrana LM et al (2018) Physicochemical properties of alginate-based fi lms : Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll 81:442–448. https://doi.org/10.1016/j.foodhyd.2018.03.014

    Article  CAS  Google Scholar 

  18. Paşcalău V, Popescu V, Popescu GL et al (2012) The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. J Alloys Compd 536:S418–S423. https://doi.org/10.1016/j.jallcom.2011.12.026

    Article  CAS  Google Scholar 

  19. Seixas FL, Turbiani FRB, Salomão PG et al (2013) Biofilms Composed of Alginate and Pectin : Effect of Concentration of Crosslinker and Plasticizer Agents. Chem Eng Trans 32:1693–1698

    Google Scholar 

  20. McHugh TH, Krochta JM (1994) Sorbitol-vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agric Food Chem 42:841–845. https://doi.org/10.1021/jf00040a001

    Article  CAS  Google Scholar 

  21. Rouilly A, Rigal L (2003) Effects of v arious plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crops Prod 18:91–100. https://doi.org/10.1016/S0926-6690(03)00015-3

    Article  CAS  Google Scholar 

  22. Saravani E, Sara P, Ghaghelestani N, Ali M (2020) Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04361-1

    Article  Google Scholar 

  23. Paolicelli P, Petralito S, Varani G et al (2018) Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. Int J Pharm 547:226–234. https://doi.org/10.1016/j.ijpharm.2018.05.046

    Article  CAS  Google Scholar 

  24. Tamri P, Hemmati A, Boroujerdnia MG (2014) Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. Int J Surg 12:843–847. https://doi.org/10.1016/j.ijsu.2014.06.016

    Article  Google Scholar 

  25. Ashraf MU, Hussain MA, Bashir S et al (2018) Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J Drug Deliv Sci Technol 45:455–465. https://doi.org/10.1016/j.jddst.2018.04.008

    Article  CAS  Google Scholar 

  26. Pramanik N, Mitra T, Khamrai M, Bhattacharyya A (2015) RSC Advances Characterization and evaluation of curcumin loaded guar gum / polyhydroxyalkanoates blend fi lms for wound healing applications †. RSC Adv 5:63489–63501. https://doi.org/10.1039/C5RA10114J

    Article  CAS  Google Scholar 

  27. Rhim J-W (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT-Food science and technology 37:323–330. https://doi.org/10.1016/j.lwt.2003.09.008

    Article  CAS  Google Scholar 

  28. Rezvanian M, Ahmad N, Cairul M et al (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol 97:131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079

    Article  CAS  Google Scholar 

  29. Li J, Ma J, Chen S et al (2018) Characterization of calcium alginate/ deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2018.04.022

    Article  Google Scholar 

  30. Zhang H, Cheng J, Ao Q et al (2021) Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Marine Drugs 19:264. https://doi.org/10.3390/MD19050264

  31. Giz AS, Berberoglu M, Bener S et al (2020) A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. Int J Biol Macromol 148:49–55. https://doi.org/10.1016/j.ijbiomac.2020.01.103

    Article  CAS  Google Scholar 

  32. Du Y, Sun J, Wang L et al (2019) Development of antimicrobial packaging materials by incorporation of gallic acid into Ca 2 + crosslinking konjac glucomannan / gellan gum fi lms. Int J Biol Macromol 137:1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.079

    Article  CAS  Google Scholar 

  33. Melanie H, Taarji N, Zhao Y et al (2020) Formulation and characterisation of O/W emulsions stabilised with modified seaweed polysaccharides. Int J Food Sci Technol 55:211–221. https://doi.org/10.1111/ijfs.14264

    Article  CAS  Google Scholar 

  34. Silva FEF, Batista KA, Di-medeiros MCB et al (2016) A stimuli-responsive and bioactive fi lm based on blended polyvinyl alcohol and cashew gum polysaccharide. Mater Sci Eng, C 58:927–934. https://doi.org/10.1016/j.msec.2015.09.064

    Article  CAS  Google Scholar 

  35. Nieto MB (2009) Structure and Function of Polysaccharide Gum-Based Edible Films and Coatings

  36. Abbasi AR, Sohail M, Minhas MU et al (2020) Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol 155:751–765. https://doi.org/10.1016/j.ijbiomac.2020.03.248

    Article  CAS  Google Scholar 

  37. Santos NL, de Oliveira RG, Cerri BC et al (2020) Physicochemical properties of konjac glucomannan/alginate films enriched with sugarcane vinasse intended for mulching applications. Int J Biol Macromol 165:1717–1726. https://doi.org/10.1016/j.ijbiomac.2020.10.049

    Article  CAS  Google Scholar 

  38. Bergonzi C, D’Ayala GG, Elviri L et al (2020) Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application. Int J Biol Macromol 164:586–596. https://doi.org/10.1016/j.ijbiomac.2020.07.084

    Article  CAS  Google Scholar 

  39. Hadi A, Nawab A, Alam F, Zehra K (2022) Alginate/aloe vera films reinforced with tragacanth gum. Food Chem Mole Sci 100105. https://doi.org/10.1016/j.fochms.2022.100105

  40. Xiao M, Luo L, Tang B et al (2022) Physical, structural, and water barrier properties of emulsified blend film based on konjac glucomannan/agar/gum Arabic incorporating virgin coconut oil. LWT 154:112683. https://doi.org/10.1016/j.lwt.2021.112683

    Article  CAS  Google Scholar 

  41. Fernandes FP, Fortes AC, da Cruz Fonseca SG et al (2018) Manufacture and characterization of mucoadhesive buccal films based on pectin and gellan gum containing triamcinolone acetonide. Int J Polym Sci 2018. https://doi.org/10.1155/2018/2403802

  42. Villar-Padilla A, Del Prado-Audelo ML, González-Torres M et al (2021) Development of a xanthan gum film for the possible treatment of vaginal infections. Cell Mol Biol 67:80–88. https://doi.org/10.14715/cmb/2021.67.1.12

  43. Tabatabaei SD, Ghiasi F, Gahruie HH, Hosseini SMH (2022) Effect of emulsified oil droplets and glycerol content on the physicochemical properties of Persian gum-based edible films. Polym Test 106:107427. https://doi.org/10.1016/j.polymertesting.2021.107427

    Article  CAS  Google Scholar 

  44. Wang Y, Zhu S, Liao Y, Xiong X (2014) A calcium ion-imprinted porous film prepared from a cellulose-alginate composite. J Polym Res 21. https://doi.org/10.1007/s10965-014-0612-3

  45. Padrão J, Silva JP, Rodrigues LR et al (2014) Modifying fish gelatin electrospun membranes for biomedical applications: cross-linking and swelling behavior. Soft Mater 12:247–252. https://doi.org/10.1080/1539445X.2013.873466

    Article  CAS  Google Scholar 

  46. Esmaeili M, Pircheraghi G, Bagheri R, Altstädt V (2018) The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co-plasticized thermoplastic starch blends. Polym Adv Technol 29:2880–2889. https://doi.org/10.1002/pat.4407

    Article  CAS  Google Scholar 

  47. Jouki M, Khazaei N, Ghasemlou M, Hadinezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr Polym 96:39–46. https://doi.org/10.1016/j.carbpol.2013.03.077

    Article  CAS  Google Scholar 

  48. Ahmed A, Boateng J (2018) Calcium alginate-based antimicrobial film dressings for potential healing of infected foot ulcers. Ther Deliv 9:185–204. https://doi.org/10.4155/tde-2017-0104

    Article  CAS  Google Scholar 

  49. Dick M, Maria T, Costa H et al (2015) Edible film production from chia seed mucilage : Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr Polym 130:198–205. https://doi.org/10.1016/j.carbpol.2015.05.040

    Article  CAS  Google Scholar 

  50. Kaviani A, Pircheraghi G, Bagheri R, Goharpey F (2022) Polyelectrolyte Complexes Between Chitosan and Quince Seed Gum: A Rheological, Structural, and Multiple Dye Adsorption Study. J Polym Environ 2022:1–18. https://doi.org/10.1007/S10924-022-02634-8

    Article  Google Scholar 

  51. Farhan A, Hani NM (2017) Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll 64:48–58. https://doi.org/10.1016/j.foodhyd.2016.10.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Pircheraghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedini, A.A., Pircheraghi, G. & Kaviani, A. The role of calcium crosslinking and glycerol plasticizing on the physical and mechanical properties of superabsorbent. J Polym Res 30, 20 (2023). https://doi.org/10.1007/s10965-022-03397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03397-5

Keywords

Navigation