Skip to main content
Log in

Non‑isothermal crystallization kinetics of polycaprolactone-based composite membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanocomposites have been demonstrated as potential materials for biosensors to biomedicine applications. However, the crystallization mechanism of nanocomposites has not been thoroughly investigated so far. Cellulose nanofiber is used as a new kind of nano-filler to modify the biodegradable polymer to prepare nanocomposites. Banana cellulose nanofibers/polycaprolactone composite membranes (BNCF/PCL) and banana cellulose nanofibers grafted with polycaprolactone/polycaprolactone composite membranes (BGCL/PCL) were prepared, respectively. To explore the effects of BNCF and BGCL on the crystallization properties of PCL. SEM, POM, and DSC were used to study the crystallization of PCL, BNCF/PCL, and BGCL/PCL films. Mo's method was applied to study the non-isothermal kinetics of BNCF/PCL films, Avarmi and Jeziorny's models successfully predict the non-isothermal kinetics of BGCL/PCL films. The results showed that BNCF promoted the crystallization of BNCF/PCL films. The crystallization peak temperature of BNCF/PCL films was 4.11 ℃ higher than pure PCL, and the crystallinity was 5.34% higher than that of pure PCL. The crystallization peak temperature of the BGCL/PCL films decreased slightly, but the crystallinity increased by 3.78%. The crystal growth modes of BNCF/PCL films and BGCL/PCL films were consistent with the three-dimensional growth of heterogeneous nucleation, BNCF/PCL films with average Avrami index n ranging from 2.7 to 3.9, and the BGCL/PCL films with n ranging from 2.5 to 3.2. Furthermore, the micrographs of polarized optical microscopy (POM) supported the kinetics results. This study makes a deep insight into the effect of cellulose nanofiber on the crystallization of biodegradable aliphatic polyesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  2. Elomaa L, Teixeira S, Hakala R et al (2011) Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7:3850–3856. https://doi.org/10.1016/j.actb-io.2011.06.039

    Article  CAS  PubMed  Google Scholar 

  3. Kweon HY, Mi KY, Park IK et al (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24:801–808. https://doi.org/10.1016/S0142-9612(02)00370-8

    Article  CAS  PubMed  Google Scholar 

  4. Guo YZ, Wang XH, Shen ZG et al (2013) Preparation of cellulose-graft-poly(ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr Polym 92:77–83. https://doi.org/10.1016/j.carbpol.2012.09.058

    Article  CAS  PubMed  Google Scholar 

  5. Yeo JS, Hwang SH (2017) The effect of dense polymer brush on the microfibrillated cellulose for the mechanical properties of poly(ε-caprolactone) biocomposites. Int J Adhes Adhes 78:89–94. https://doi.org/10.1016/j.ijadhadh.2017.06.023

    Article  CAS  Google Scholar 

  6. Alaswad SO, Lakshmi KB, Sudha PN et al (2020) Toxic heavy metal cadmium removal using chitosan and polypropylene based fiber composite. Int J Biol Macromol 164:1809–1824. https://doi.org/10.1016/j.ijbiomac.2020.07.252

    Article  CAS  PubMed  Google Scholar 

  7. Li P, Jin D, Dou J et al (2021) Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Int J Biol Macromol 189:516–527. https://doi.org/10.1016/j.ijbiomac.2021.08.147

    Article  CAS  PubMed  Google Scholar 

  8. Akay O, Altinkok C, Acik G et al (2022) Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(ɛ-caprolactone) for bioplastic applications. Int J Biol Macromol 196:98–106. https://doi.org/10.1016/j.ijbiomac.2021.12.051

    Article  CAS  PubMed  Google Scholar 

  9. Tibolla H, Pelissari FM, Martins J et al (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201. https://doi.org/10.1016/j.foodhyd.2017.08.027

    Article  CAS  Google Scholar 

  10. Tibolla H, Pelissari FM, Martins J et al (2019) Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydr Polym 207:169–179. https://doi.org/10.1016/j.carbpol.2018.11.079

    Article  CAS  PubMed  Google Scholar 

  11. Tibolla H, Czaikoski A, Pelissari FM et al (2020) Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. Int J Biol Macromol 161:132–146. https://doi.org/10.1016/j.ijbiomac.2020.05.194

    Article  CAS  PubMed  Google Scholar 

  12. Rani K, Gomathi T, Vijayalakshmi K et al (2019) Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int J Biol Macromol 131:461–472. https://doi.org/10.1016/j.ijbiomac.2019.03.064

    Article  CAS  Google Scholar 

  13. Tibolla H, Pelissari FM, Rodrigues M et al (2017) Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind Crops Prod 95:664–674. https://doi.org/10.1016/j.indcrop.2016.11.035

    Article  CAS  Google Scholar 

  14. Zheng Q, Cai Z, Ma Z et al (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 75:3263–3271. https://doi.org/10.1021/am507999s

    Article  CAS  Google Scholar 

  15. Reddy MM, Vivekanandhan S, Misra M et al (2013) Biobased plastics and bionanocomposites: Current status and future opportunities. Prog Polym Sci 38:1653–1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006

    Article  CAS  Google Scholar 

  16. Raquez JM, Habibi Y, Murariu M et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  17. Oksman K, Aitomäki Y, Mathew AP et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  18. Mi HY, Jing X, Peng J et al (2014) Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21:2727–2741. https://doi.org/10.1007/s10570-014-0327-y

    Article  CAS  Google Scholar 

  19. Bellani CF, Pollet E, Hebraud A et al (2016) Morphological, thermal, and mechanical properties of poly(ε-caprolactone)/poly(ε-caprolactone)-grafted-cellulose nanocrystals mats produced by electrospinning. J Appl Polym Sci 133:43445. https://doi.org/10.1002/app.43445

    Article  CAS  Google Scholar 

  20. Gilberto S, Carole F, Julien B et al (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227. https://doi.org/10.1016/j.eurpolymj.2011.09.014

    Article  CAS  Google Scholar 

  21. Lv Q, Xu C, Wu D et al (2017) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl Sci Manuf 92:17–26. https://doi.org/10.1016/j.compositesa.2016.10.035

    Article  CAS  Google Scholar 

  22. Aravamudhan A, Ramos DM, Nip J et al (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9:719–731. https://doi.org/10.1166/jbn.2013.1574

    Article  CAS  PubMed  Google Scholar 

  23. Zuppolini S, Maya IC, Diodato L et al (2020) Self-associating cellulose-graft-poly(ε-caprolactone) to design nanoparticles for drug release. Mater Sci Eng C 108:110385. https://doi.org/10.1016/j.msec.2019.110385

    Article  CAS  Google Scholar 

  24. Crescenzi V, Manzini G, Calzolari G et al (1972) Thermodynamics of fusion of poly-β-propio-lactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463. https://doi.org/10.1016/0014-3057(72)90109-7

    Article  CAS  Google Scholar 

  25. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  26. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  27. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III J Chem Phys 9:177–184. https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  28. Nouira S, Hassine T, Fitoussi J et al (2021) Non-isothermal crystallization kinetics and its effect on the mechanical properties of homopolymer isotactic polypropylene. J Polym Res 29:26. https://doi.org/10.1007/s10965-021-02869-4

    Article  CAS  Google Scholar 

  29. Samanta P, Thangapandian V, Srivastava R et al (2022) Non-isothermal crystallization kinetics of confined poly (ethylene oxide) in electrospun nanofibers prepared from polystyrene/ poly (ethylene oxide) blends. J Polym Res 29:125. https://doi.org/10.1007/s10965-022-02984-w

    Article  CAS  Google Scholar 

  30. Magalhães da Silva SP, Silva MA, Oliveira JM (2021) Non-isothermal cold crystallization kinetics of cork–polymer biocomposites based on polylactic acid for fused filament fabrication. J Therm Anal Calorim 146:1667–1678. https://doi.org/10.1007/s10973-020-10147-6

    Article  CAS  Google Scholar 

  31. Mao HI, Wang LY, Chen CW et al (2021) Enhanced crystallization rate of bio-based poly(butylene succinate-co-propylene succinate) copolymers motivated by glycerol. J Polym Res 28:92. https://doi.org/10.1007/s10965-021-02460-x

    Article  CAS  Google Scholar 

  32. Meng C, Liu X (2021) Synthesis of bio-based semi aromatic high temperature polyamide PA5T/56 and effect of benzene ring on non-isothermal crystallization kinetics. J Polym Res 28:383. https://doi.org/10.1007/s10965-021-02727-3

    Article  CAS  Google Scholar 

  33. Luo H, Chi H, Tao Y et al (2021) The effect of phase separation on crystallization of polyethylene/poly(ethylene-alt-propylene) blend. J Polym Res 28:115. https://doi.org/10.1007/s10-965-021-02482-5

    Article  CAS  Google Scholar 

  34. Luyt AS, Gasmi S (2016) Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci 51:4670–4681. https://doi.org/10.1007/s10853-016-9784-z

    Article  CAS  Google Scholar 

  35. Manchanda B, Vimal KK, Kapur GS et al (2016) Effect of sepiolite on nonisothermal crystallization kinetics of polypropylene. J Mater Sci 51:9535–9550. https://doi.org/10.1007/s10853-016-0210-3

    Article  CAS  Google Scholar 

  36. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158. https://doi.org/10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  37. Jana RN, Cho JW (2010) Non-isothermal crystallization of poly(ε-caprolactone)-grafted multi-walled carbon nanotubes. Compos Part A Appl Sci Manuf 41:1524–1530. https://doi.org/10.1016/j.compositesa.2010.06.015

    Article  CAS  Google Scholar 

  38. Bhave T, Gupta, et al (2016) Nonisothermal crystallization kinetics of carbon nanotubes containing segmented polyurethane elastomer. Polym Eng Sci 56:1248–1258. https://doi.org/10.1002/pen.-24358

    Article  Google Scholar 

  39. Gao C, Ren X, Zhang J et al (2018) Effect of magnesium hydroxide sulfate hydrate whisker on non-isothermal crystallization kinetics of poly(butylene succinate). Thermochim Acta 663:9–18. https://doi.org/10.1016/j.tca.2018.02.016

    Article  CAS  Google Scholar 

  40. Choi J, Shin T, Song K et al (2020) Nonisothermal crystallization behaviors of structure-modified polyamides (Nylon 6s). ACS Omega 45:29325–29332. https://doi.org/10.1021/acsomega.0c04082

    Article  CAS  Google Scholar 

  41. Zhou B, Tong ZZ, Huang J et al (2013) Synthesis and thermal behavior of poly(ε-caprolactone) grafted on multiwalled carbon nanotubes with high grafting degrees. Mater Chem Phys 137:1053–1061. https://doi.org/10.1016/j.matchemphys.2012.11.027

    Article  CAS  Google Scholar 

  42. Zhou B, He WN, Jiang XY et al (2014) Effect of molecular weight on isothermal crystallization kinetics of multi-walled carbon nanotubes-graft-poly(ε-caprolactone). Compos Sci Technol 93:23–29. https://doi.org/10.1016/j.compscitech.2013.12.012

    Article  CAS  Google Scholar 

Download references

Funding

Funding for this research was provided by the National Natural Science Foundation of China (contract No. 21861014 to SHZ); Open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University (grant No. 2020GXYSOF15 to JYP); Talent Introduction Project of Guangdong University of Petrochemical Technology (contract No. 2020rc033 to SHZ); Guangxi Natural Science Foundation Project of China (contract No. 202OGXNSFBA159038 to DFT).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Shuhua Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Tan, D., Huang, C. et al. Non‑isothermal crystallization kinetics of polycaprolactone-based composite membranes. J Polym Res 29, 479 (2022). https://doi.org/10.1007/s10965-022-03335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03335-5

Keywords

Navigation