Skip to main content
Log in

Comparative physicochemical characterization of ULTEM/SWCNT nanocomposites: Surface, thermal and electrical conductivity analyses

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, it was aimed to investigate the electrical, thermal and surface properties of polyetherimide/single walled carbon nanotube (ULTEM/SWCNT) composites containing different weight ratios of SWCNT. For this purpose, 1%, 5% and 10% by mass of SWCNT was dispersed in ULTEM by ultrasonic homogenization. The electrical conductivity and thermal properties of composite films prepared by solvent casting method were analyzed. The conductivity enhanced with increasing amount of SWCNT and were observed as 0.019 Scm− 1 in the ULTEM/SWCNT-10. Besides, the glass transition temperature value of pure ULTEM increased from 216.67 °C to 219.59 °C with SWCNT addition. The surface properties of the composites were investigated by inverse gas chromatography (IGC). IGC experiments were carried out in infinite dilution with various polar and non-polar solvents. The surface properties of the composites were determined from the retention diagrams. From IGC experiments, it was determined that the composite surfaces were basic in character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan W, Sharma R, Saini P (2016) Carbon nanotube-based polymer composites: synthesis, properties and applications. In: Carbon Nanotubes - Current Progress of their Polymer Composites. InTech. https://doi.org/10.5772/62497

  2. Choudhary V, Singh BP, Mathur RB (2013) Carbon nanotubes and their composites. In: Syntheses and Applications of Carbon Nanotubes and Their Composites. InTech. https://doi.org/10.5772/52897

  3. Yazdani H, Ghasemi H, Wallace C, Hatami K (2019) Mechanical properties of carbon nanotube-filled polyethylene composites: a molecular dynamics simulation study. Polym Compos 40:E1850–E1861

    Article  CAS  Google Scholar 

  4. Dalmas F, Dendievel R, Chazeau L, Cavaille JY, Gauthier C (2006) Carbon nanotube-filled polymer composites. numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923–2931

    Article  CAS  Google Scholar 

  5. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113

    Article  CAS  PubMed  Google Scholar 

  6. Ha C-S, Mathews AS (2011) Polyimides and high performance organic polymers. Advanced Functional Materials. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  7. Cakar F, Cankurtaran O (2005) Determination of secondary transitions and thermodynamic interaction parameters of poly (ether imide) by inverse gas chromatography. Polym Bull 55:95–104

    Article  CAS  Google Scholar 

  8. Margolis JM (1985) Engineering Thermoplastics Properties and Applications, 1st Edition, CRC Press, Boca Raton. https://doi.org/10.1201/9781003066156

  9. Pasini SM, Batistella MA, de Souza SMAGU, Wang J, Hotza D, de Souza AAU (2020) Thermal degradation and flammability of TiO2–polyetherimide nanocomposite fibers. Polym Bull 77:4937–4958

    Article  CAS  Google Scholar 

  10. Kumar S, Li B, Caceres S, Maguire RG, Zhong WH (2009) Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method. Nanotechnol 20:46

    Google Scholar 

  11. Lee S, Kang S, Kim JH (2017) Electrical and thermal properties of PET/polyetherimide/multiwalled carbon nanotube nanocomposites. Polym Korea 41:287–294

    Article  CAS  Google Scholar 

  12. Kumar S, Sun LL, Lively B, Zhong WH (2011) Thermal and mechanical enhancements of polyetherimide/multi-walled carbon nanotube composite performance using “solid nano-nectar” assisted melt dispersion. J Nanosci Nanotechnol 11:1976–1985

    Article  CAS  PubMed  Google Scholar 

  13. Feng D, Wang Q, Xu D, Liu P (2019) Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos Sci Technol 182:107753

    Article  CAS  Google Scholar 

  14. Abbasi H, Antunes M, Velasco J (2018) Effects of carbon nanotubes/graphene nanoplatelets hybrid systems on the structure and properties of polyetherimide-based foams. Polym 10:348

    Article  CAS  Google Scholar 

  15. Feng D, Liu P, Wang Q (2019) Exploiting the piezoresistivity and EMI shielding of polyetherimide/carbon nanotube foams by tailoring their porous morphology and segregated CNT networks. Compos A Appl Sci Manuf 124:105463

    Article  CAS  Google Scholar 

  16. Sun C, Berg JC (2003) A review of the different techniques for solid surface acid–base characterization. Adv Colloid Interf Sci 105:151–175

    Article  CAS  Google Scholar 

  17. Askin A, Topaloglu Yazici D (2005) Surface characterization of sepiolite by inverse gas chromatography. Chromatographia 61:625–631

    Article  CAS  Google Scholar 

  18. Adiguzel AC, Korkmaz B, Cakar F, Senkal BF, Cankurtaran O (2021) Application of inverse gas chromatography in the surface characterization of diethanol amine modified polystyrene based polymer. Turk J Chem 45:1533–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cakar F (2021) Synthesis and thermodynamic characterization of poly(methyl methacrylate)/multiwall carbon nanotube nanocomposite. Surf Interf Anal 53:258–267

    Article  CAS  Google Scholar 

  20. Basivi PK, Sreekanth TVM, Sivalingam R, Thota C, Pasupuleti VR (2019) Surface characterization and London dispersive surface free energy of functionalized single-walled carbon nanotubes with a blend of polytetrafluoroethylene by inverse gas chromatography. Surf Interf Anal 51:516–524

    Article  CAS  Google Scholar 

  21. Luo Y, Zhao Y, Cai J, Duan Y, Du S (2012) Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Des 33:405–412

    Article  CAS  Google Scholar 

  22. Ugraskan V, Sazci O, Hazar Yoruc AB (2021) Enhanced mechanical properties of poly (vinyl alcohol)/boron phosphate nanocomposites. Plast Rubber Compos 50:477–484

    Article  CAS  Google Scholar 

  23. Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC (2006) Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos Sci Technol 66:1190–1197

    Article  CAS  Google Scholar 

  24. Pitchan MK, Bhowmik S, Balachandran M, Abraham M (2016) Effect of surface functionalization on mechanical properties and decomposition kinetics of high performance polyetherimide/MWCNT nano composites. Compos A Appl Sci Manuf 90:147–160

    Article  CAS  Google Scholar 

  25. Ugraskan V, Isik B, Yazici O, Cakar F (2022) Removal of Safranine T by a highly efficient adsorbent (Cotinus Coggygria leaves): isotherms, kinetics, thermodynamics, and surface properties. Surf Interf 28:101615

    Article  CAS  Google Scholar 

  26. Pal A, Kondor A, Mitra S, Thu K, Harish S, Saha BB (2019) On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J Ind Eng Chem 69:432–443

    Article  CAS  Google Scholar 

  27. Legras A, Kondor A, Alcock M, Heitzmann MT, Truss RW (2017) Inverse gas chromatography for natural fibre characterisation: dispersive and acid-base distribution profiles of the surface energy. Cellulose 24:4691–4700

    Article  CAS  Google Scholar 

  28. Mohammadi-Jam S, Waters KE (2014) Inverse gas chromatography applications: a review. Adv Colloid Interf Sci 212:21–44

    Article  CAS  Google Scholar 

  29. Isik B, Cakar F, Cankurtaran H, Cankurtaran O (2021) Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation. Turk J Chem 45:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adiguzel A, Cakar F, Senkal B, Cankurtaran O, Hepuzer Gursel Y, Karaman F (2019) Determination of glass transition temperature and surface properties of novel chalcone modified poly (styrene) based polymer. Therm Sci 23:193–202

    Article  Google Scholar 

  31. Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interf Sci 77:353–362

    Article  CAS  Google Scholar 

  32. Papadopoulou SK, Papaiconomou N, Baup S, Iojoiu C, Svecova L, Thivel PX (2019) Surface characterization of 1-butyl-1-ethylpiperidinium bromide by inverse gas chromatography. J Mol Liq 287:110945

    Article  CAS  Google Scholar 

  33. Schultz J, Lavielle L (1989) Interfacial properties of carbon fiber–epoxy matrix composites. https://doi.org/10.1021/bk-1989-0391.ch014

  34. Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre-epoxy composites. J Adhes 23:45–60

    Article  CAS  Google Scholar 

  35. Cakar F, Yazici O, Sakar D, Cankurtaran O, Karaman F (2011) Surface analysis of poly(ether imide) by inverse gas chromatography. Optoelectron Adv Mater Rapid Commun 5:821–826

    CAS  Google Scholar 

  36. Zhang X, Yang D, Xu P, Wang C, Du Q (2007) Characterizing the surface properties of carbon nanotubes by inverse gas chromatography. J Mater Sci 42:7069–7075

    Article  CAS  Google Scholar 

  37. Schultz J, Tsutsumi K, Donnet JB (1977) Surface properties of high-energy solids. J Colloid Interf Sci 59:272–276

    Article  CAS  Google Scholar 

  38. Wang Q, Wang Q (2020) Evaluation of the surface properties of poly(ionic liquid) materials by inverse gas chromatography. Eur Polym J 123:109451

    Article  CAS  Google Scholar 

  39. Cava D, Gavara R, Lagarón JM, Voelkel A (2007) Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. J Chromatogr A 1148:86–91

    Article  CAS  PubMed  Google Scholar 

  40. Ugraskan V, Isik B, Yazici O, Cakar F (2021) Surface characterization and synthesis of boron carbide and silicon carbide. Solid State Sci 118:106636

    Article  CAS  Google Scholar 

  41. Ocak H, Mutlu-Yanic S, Cakar F, Bilgin-Eran B, Guzeller D, Karaman F, Cankurtaran O (2016) A study of the thermodynamical interactions with solvents and surface characterisation of liquid crystalline 5-((S)-3,7-dimethyloctyloxy)-2-[[[4-(dodecyloxy)phenyl]imino]-methyl]phenol by inverse gas chromatography. J Mol Liq 223:861–867

    Article  CAS  Google Scholar 

  42. Isik B, Cakar F, Cankurtaran O (2021) The study on cholesteryl chloroformate liquid crystal for separation of isomers and determination of its surface properties. Sep Sci Technol. https://doi.org/10.1080/01496395.2021.1903503

    Article  Google Scholar 

  43. Santos JMRCA, Fagelman K, Guthrie JT (2002) Characterisation of the surface Lewis acid–base properties of poly(butylene terephthalate) by inverse gas chromatography. J Chromatogr A 969:111–118

    Article  CAS  PubMed  Google Scholar 

  44. Xu Y, Lin J, Xia J, Hu B (2011) Surface characterization of urushiol-titanium chelate polymers by inverse gas chromatography. Chin J Chromatogr 29:249–253

    Article  CAS  Google Scholar 

  45. Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H (2012) Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohydr Polym 87:2367–2375

    Article  CAS  Google Scholar 

  46. Chen XY, Romero A, Paton-Carrero A, Lavin-Lopez MP, Sanchez-Silva L, Valverde JL, Kaliaguine S, Rodrigue D (2019) Functionalized graphene–reinforced foams based on polymer matrices. Functionalized Graphene Nanocomposites and their Derivatives. Elsevier, 1st Edition, pp 121–155

  47. Huang CL, Wang YJ, Fan YC, Hung CL, Liu YC (2017) The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study. J Mater Sci 52:2560–2580. https://doi.org/10.1007/s10853-016-0549-5

    Article  CAS  Google Scholar 

  48. Zeng Y, Liu P, Du J, Zhao L, Ajayan PM, Cheng HM (2010) Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube–polymer interactions. Carbon 48:3551–3558

    Article  CAS  Google Scholar 

  49. Song K, Lee J, Choi SO, Kim J (2019) Interaction of surface energy components between solid and liquid on wettability, and its application to textile anti-wetting finish. Polym 11:498

    Article  CAS  Google Scholar 

  50. Taherian R (2016) Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol 123:17–31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by Yildiz Technical University Scientific Research Projects Coordination Department. Project number: FBA-2021-3798. BioRender.com was used to prepare the graphical abstract. The authors would like to thank the YTU LC Group, for supporting in the DSC analyzes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Cakar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugraskan, V., Isik, B., Yazici, O. et al. Comparative physicochemical characterization of ULTEM/SWCNT nanocomposites: Surface, thermal and electrical conductivity analyses. J Polym Res 29, 254 (2022). https://doi.org/10.1007/s10965-022-03111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03111-5

Keywords

Navigation