Skip to main content
Log in

Comparative study on TPU/multi-walled carbon nanotubes conductive nanocomposites for volatile organic compounds sensor applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel thermoplastic polyurethane (TPU)/multi walled carbon nanotubes (MWCNTs) conductive nanocomposites were fabricated by direct solution compounding method for volatile organic compounds (VOCs) sensors applications. The results of field emission scanning electron microscopy (FESEM) and electrical conductivity test showed that MWCNTs formed ideal conductive networks in TPU matrix. The volume conductivity of TPU/MWCNTs nanocomposites increased from 10-12 to 10-4 S/mm, and the percolation value was 4.76 wt%. The size parameters of MWCNTs did not show obvious effects on the formation of conductive networks based on our comparative investigation. XRD and FTIR tests showed that MWCNTs enhanced the short range ordered structure in amorphous region of TPU due to the physical entanglement. The characteristic stretching of TPU showed no obvious change because of weak chemical interaction between MWCNTs and TPU. Moreover, MWCNTs effectively enhanced the thermal stability of the nanocomposites, as verified by TG analysis. The gas sensing property tests showed that the gas sensing response of TPU/MWCNTs nanocomposites mainly came from the resistance changes due to the disconnection of conductive networks, as a result of VOCs adsorption-swelling effects. The prepared nanocomposites showed superior selectivity, especially to benzene vapor when compared with formaldehyde and other gases. The parameters and contents of MWCNTs have a certain influence on the gas sensing response speed and recovery ability of the nanocomposites. In addition, the prepared TPU/MWCNTs nanocomposites displayed excellent repeatability and fast response to the change of electrical resistance (in seconds) after cyclic exposure to VOCs and pure dry air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Consales M, Crescitelli A, Penza M et al (2009) SWCNT nanocomposite optical sensors for VOC and gas trace detection [J]. Sens Actuators B 138(1):351–361

    Article  CAS  Google Scholar 

  2. Baimpos T, Boutikos P, Nikolakis V et al (2010) A polymer-Metglas sensor used to detect volatile organic compounds [J]. Sens Actuators A Phys 158(2):249–253

    Article  CAS  Google Scholar 

  3. Ibanez FJ, Zamborini FP (2008) Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles [J]. Acs Nano 2(8):1543–1552

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Dong B, Liu W et al (2020) Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance [J]. Sens Actuators B Chem 2020(320):128405–128412

    Article  CAS  Google Scholar 

  5. Yu Z, Gao J, Xu L et al (2020) Fabrication of lettuce-like ZnO gas sensor with enhanced H2S gas sensitivity [J]. Crystals 10(3):145–158

    Article  CAS  Google Scholar 

  6. Zhao WJ, Ding KL, Chen YS et al (2020) Optimized low frequency temperature modulation for improving the selectivity and linearity of SnO2 gas sensor [J]. IEEE Sens J 20(18):10433–10443

  7. Xiang Q, Meng GF, Zhang Y et al (2010) Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties [J]. 143(2):635–640

    CAS  Google Scholar 

  8. Wang W, Li Z, Zheng W et al (2010) Cr2O3-sensitized ZnO electrospun nanofibers based ethanol detectors [J]. Sens Actuators B Chem 143(2):754–758

    Article  CAS  Google Scholar 

  9. Li H, Xu J, Zhu Y et al (2010) Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires [J]. Talanta 82(2):458–463

    Article  CAS  PubMed  Google Scholar 

  10. Zhefei L, Frank DB, Massimo FB et al (2008) One-step fabrication of a polyaniline nanofiber vapor sensor [J]. 134(1):31–35

    Google Scholar 

  11. Li W, Hoa ND, Cho Y et al (2009) Nanofibers of conducting polyaniline for aromatic organic compound sensor [J]. Sens Actuators B Chem 143(1):132–138

    Article  CAS  Google Scholar 

  12. Ayad MA, Torad NL (2009) Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance [J]. Talanta 78(4–5):1280–1285

    Article  CAS  PubMed  Google Scholar 

  13. Virji S, Huang J, Kaner RB et al (2016) Polyaniline nanofiber gas sensors: Examination of response mechanisms [J]. Nano Letters 4(3):491–496

    Article  CAS  Google Scholar 

  14. Lonergan MC, Severin EJ, Doleman BJ et al (1996) Array-based vapor sensing using chemically sensitive carbon black-polymer resistors [J]. Chem Mater 8(9):2298–2312

    Article  CAS  Google Scholar 

  15. Jayanth N, Senthil P (2019) Application of 3D printed ABS based conductive carbon black composite sensor in void fraction measurement[J]. Compos Part B Eng 159(18):224–230

    Google Scholar 

  16. Vu V, Xuan D, Vu N et al (2020) Realization of graphene oxide nanosheets as a potential mass-type gas sensor for detecting NO2, SO2, CO, and NH3 [J]. Mater Today Commun 2020(25):101682–101689

    Google Scholar 

  17. Chiou JC, Wu CC, Lin TM (2019) Sensitivity enhancement of acetone gas sensor using polyethylene glycol/multi-walled carbon nanotubes composite sensing film with thermal treatment [J]. Polymers 11(3):423–439

    Article  PubMed Central  CAS  Google Scholar 

  18. Douglas RK, Alexander SP (2008) Carbon nanotube gas and vapor sensors [J]. Angewandte Chemie International Edition 47(35):6550–6570

    Article  CAS  Google Scholar 

  19. Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes [J]. Cheminform 35(9):790–798

    CAS  Google Scholar 

  20. Zhang T, Mubeen S, Myung NV et al (2008) Recent progress in carbon nanotube-based gas sensors [J]. Nanotechnology 19(33):332001–332013

    Article  PubMed  CAS  Google Scholar 

  21. Qureshi A, Kang WP, Davidson JL et al (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications [J]. Diam Relat Mater 18(12):1401–1420

    Article  CAS  Google Scholar 

  22. Mohamed MG, Kuo SW (2018) Functional silica and carbon nanocomposites based on polybenzoxazines [J]. Macromol Chem Phys 220(1):1800306–1800318

    Article  CAS  Google Scholar 

  23. Samy MM, Mohamed MG, Kuo SW (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage [J]. Compos Sci Technol 199:108360–108389

    Article  CAS  Google Scholar 

  24. Samy MM, Mohamed MG, El-Mahdy A et al (2021) High-Performance Supercapacitor Electrodes Prepared From Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes [J]. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c05720

    Article  PubMed  Google Scholar 

  25. Snow ES, Perkins FK, Houser EJ et al (2005) Chemical detection with a single-walled carbon nanotube capacitor [J]. Science 307(5717):1942–1945

    Article  CAS  PubMed  Google Scholar 

  26. Collins PG, Bradley K, Ishigami M et al (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science 287(5459):1801–1804

    Article  CAS  PubMed  Google Scholar 

  27. Kong J, Franklin NR, Zhou C et al (2000) Nanotube molecular wires as chemical sensors [J]. Science 287(5453):622–625

    Article  CAS  PubMed  Google Scholar 

  28. Penza M, Cassano G, Rossi R et al (2007) Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters [J]. Appl Phys Lett 90(17):173123–173126

    Article  CAS  Google Scholar 

  29. Penza M, Rossi R, Alvisi M et al (2009) Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications [J]. Sens Actuators B Chem 140(1):176–184

    Article  CAS  Google Scholar 

  30. Penza M, Rossi R, Alvisi M et al (2010) Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications [J]. Nanotechnology 21(10):105501–105514

    Article  CAS  PubMed  Google Scholar 

  31. Qi P, Vermesh O, Grecu M et al (2003) Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection [J]. Nano Lett 3(3):347–351

    Article  CAS  Google Scholar 

  32. Wei C, Dai L, Roy A et al (2006) Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites [J]. J Am Chem Soc 128(5):1412–1413

    Article  CAS  PubMed  Google Scholar 

  33. Bouvree A, Feller JF, Castro M et al (2009) Conductive polymer nano-biocomposites (CPC): chitosan-carbon nanoparticle a good candidate to design polar vapour sensors [J]. Sens Actuators B Chem 138(1):138–147

    Article  CAS  Google Scholar 

  34. Castro M, Lu J, Stéphane B et al (2009) Carbon nanotubes-poly (ε-caprolactone) composite vapour sensors [J]. Carbon 47(8):1930–1942

    Article  CAS  Google Scholar 

  35. Kumar B, Feller JF, Castro M et al (2010) Conductive bio-Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing [J]. Talanta 81(3):908–915

    Article  CAS  PubMed  Google Scholar 

  36. Lu J, Kumar B, Castro M et al (2009) Vapour sensing with conductive polymer nanocomposites (CPC): Polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer [J]. Sens Actuators B Chem 140(2):451–460

    Article  CAS  Google Scholar 

  37. Fan Q, Qin Z, Villmow T et al (2011) Vapor sensing properties of thermoplastic polyurethane multifilament covered with carbon nanotube networks [J]. Sens Actuators B Chem 156(1):63–70

    Article  CAS  Google Scholar 

  38. Das R, Abd Hamid SB, Ali ME et al (2015) Carbon nanotubes characterization x-ray powder diffraction-a review [J]. Curr Nanosci 11(1):23–35

    Article  Google Scholar 

  39. Li ZQ, Lu CJ, Xia ZP et al (2007) X-ray diffraction patterns of graphite and turbostratic carbon [J]. Carbon 45(8):1686–1695

    Article  CAS  Google Scholar 

  40. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform [J]. J Ind Eng Chem 20(5):2883–2887

    Article  CAS  Google Scholar 

  41. Mostafa M, Mwafy A, Awwad S et al (2021) Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects 626:126992–127000

    Article  CAS  Google Scholar 

  42. Diel J, Franco D, Lgansi A et al (2021) Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption [J]. Chemosphere 283:131193–131203

    Article  CAS  PubMed  Google Scholar 

  43. Zallen R (1983) The physics of amorphous solids [M]. Wiley, New York, p 4

    Book  Google Scholar 

  44. Ajayan PM, Schadler LS, Giannaris C et al (2000) Single-walled carbon nanotube-polymer composites: Strength and weakness [J]. J Adv Mater 12(10):750–753

    Article  CAS  Google Scholar 

  45. Jeelani S (2008) Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles [J]. Mater Sci Eng A 479(1–2):213–222

    Google Scholar 

  46. Man DL, Lu M, Huang YP et al (2014) Effect of Polyurethane Hard Segment Content on Casein-Polyurethane Emulsion and Film Properties [J]. Polyurethane Industry 29(4):27–30+34

  47. Rein MD, Breuer O, Wagner HD (2011) Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices [J]. Compos Sci Technol 71(3):373–381

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financial supported by the Cooperation project of Chunhui plan of the ministry of education of China (Grant No. Z2018088, Z2017070). Interface innovation research studio project for College Students of Xi-hua University (Grant No. 2019-07).The National Innovation and Entrepreneurship Training Program for College Students (202110623XXX); and Graduate Innovation Fund of Xi-hua University (Grant No. SA2000002910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Bian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Novel TPU/MWCNTs conductive nanocomposites for volatile organic compounds (VOCs) sensor applications were fabricated by direct solution compounding.

• The influence of MWCNTs parameters on the gas sensing properties of nanocomposites was comparatively studied.

• The prepared nanocomposites had excellent selectivity, good reproducibility and fast response to resistance changes.

• This work provides a novel strategy for the research and development of gas sensing materials, and plays an enlightening role in the research and development of gas sensing materials.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 540 KB)

Supplementary file2 (TIF 8456 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Xiong, T., Zhang, Z. et al. Comparative study on TPU/multi-walled carbon nanotubes conductive nanocomposites for volatile organic compounds sensor applications. J Polym Res 28, 350 (2021). https://doi.org/10.1007/s10965-021-02717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02717-5

Keywords

Navigation