Skip to main content

Advertisement

Log in

Effects of crystal planes of ZnO nanocrystal on crystalline, thermal and thermal-oxidation stability of iPP

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The nanocrystalline with different crystal planes often displayed diverse physical and chemical properties. However, the effects of crystal planes of inorganic nano-particle have been few focused on. Here, two kinds of nano-crystal ZnO with different crystal planes were used to explore their effect on the crystallization nucleation, crystal morphologies, thermal and thermal-oxidation stability of iPP. The results shown that the (1010) and (0002) planes possessed different effects for iPP. The (1010) planes with non-polar and low surface energy has highly nucleating effective for iPP, the crystallization temperature increased by 11 °C, the size of spherulites decreased, the number of spherulites increased, the nucleation efficiency and crystallization rate up to 57.81% and 1.27 min−1, the thermal and thermal oxidation stability (TG, OIT, OOT) of iPP improved by 6 °C, 6 min and 12 °C. In contrast, the (0002) planes with polar and high surface energy have no effect for iPP. Our research results indicate that the wettability and interface compatibility between crystal planes and iPP matrix, which was caused by the polarity and surface energy of (1010) or (0002) planes played key role in improving the performance of polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jiang ZY, Kuang Q, Xie ZX, Zheng LS (2010) Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv Func Mater 20(21):3634–3645

    Article  CAS  Google Scholar 

  2. Lin HX, Lei ZC, Jiang ZY, Hou CP, Liu DY, Xu MM, Tian ZQ, Xie ZX (2013) Supersaturation-dependent surface structure evolution: from ionic, molecular to metallic micro/nanocrystals. J Am Chem Soc 135(25):9311–9314

    Article  CAS  Google Scholar 

  3. Liu Q, Yang JM, Jin LN, Sun WY (2014) Controlled synthesis of porous coordination-polymer microcrystals with definite morphologies and sizes under mild conditions. Chem Eur J 20(45):14783–14789

    Article  CAS  Google Scholar 

  4. Xie Z, Chen Q, Zhang J, Cao Z, Lin H, Kuang Q (2017) Surface structure-controlled synthesis of nanocrystals through supersaturation dependent growth strategy. Scientia Sinica Chimica 47(5):507–516

    Article  Google Scholar 

  5. Xu T, Zhou X, Jiang Z, Kuang Q, Xie Z, Zheng L (2009) Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route. Cryst Growth Des 9(1):192–196

    Article  CAS  Google Scholar 

  6. Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 48:9180–9183

    Article  CAS  Google Scholar 

  7. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  CAS  Google Scholar 

  8. Phua SL, Yang L, Toh CL, Guoqiang D, Lau SK, Dasari A, Lu X (2013) Simultaneous enhancements of uv resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay. ACS Appl Mater Interfaces 5(4):1302–1309

    Article  CAS  Google Scholar 

  9. Devi RR, Maji TK (2012) Effect of Nano-ZnO on Thermal, mechanical, uv stability, and other physical properties of wood polymer composites. Ind Eng Chem Res 51(10):3870–3880

    Article  CAS  Google Scholar 

  10. Kobayashi R, Shibata M (2019) Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. J Polym Res 26(7)

  11. Jiang J, Li G, Ding Q, Mai K (2012) Ultraviolet resistance and antimicrobial properties of zno-supported zeolite filled isotactic polypropylene composites. Polym Degrad Stab 97:833–838

    Article  CAS  Google Scholar 

  12. Liang Y, Xu J, Liu X, Zhong G, Li Z (2013) Role of surface chemical groups on carbon nanotubes in nucleation for polymer crystallization: interfacial interaction and steric effect. Polymer 9:1–10

    Google Scholar 

  13. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377

    Article  CAS  Google Scholar 

  14. Feng J, Chen L, Gu J, He Z, Yun J, Wang X (2016) Synthesis and characterization of aryl boron-containing thermoplastic phenolic resin with high thermal decomposition temperature and char yield. J Polym Res 23(5)

  15. Labour T, Vigier G, Séguéla R (2002) Influence of the β-crystalline phase on the mechanical properties of unfilled and calcium carbonate-filled polypropylene: ductile cracking and impact behavior. J Polym Sci Part B Polym Phys 40:31–42

    Article  CAS  Google Scholar 

  16. Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci 85(6):1174–1184

    Article  CAS  Google Scholar 

  17. Papageorgiou DG, Chrissafis K, Bikiaris DN (2015) β-nucleated polypropylene: processing, properties and nanocomposites. Polym Rev 55(4):596–629

    Article  CAS  Google Scholar 

  18. Sun X, Li H, Zhang X, Wang D, Schultz JM, Yan S (2010) Effect of matrix molecular mass on the crystallization of β-form isotactic polypropylene around an oriented polypropylene fiber. Macromolecules 43(1):561–564

    Article  CAS  Google Scholar 

  19. Handique J, Dolui SK (2019) A thermally remendable multiwalled carbon nanotube/epoxy composites via Diels-Alder bonding. J Polym Res 26(7)

  20. Slisenko O, Mamunya Y (2019) Novel highly hydrophilic organic/inorganic composites based on polyacrylamide and silica: synthesis strategy, structure and swelling behaviour. J Polym Res 26(7)

  21. Tariq A, Afzal A, Rashid IA, Shakir MF (2020) Study of thermal, morphological, barrier and viscoelastic properties of PP grafted with maleic anhydride (PP-g-MAH) and PET blends. J Polym Res 27(10)

  22. Chen Y, Liu Y, Yue C, Teng C, Chen S (2020) Enhanced effect of OMMT and KH-Al2O3 on polyurethane composite mechanical properties. J Polym Res 27(9)

  23. Abdou JP, Braggin GA, Luo Y, Stevenson AR, Chun D, Zhang S (2015) Graphene-Induced oriented interfacial microstructures in single fiber polymer composites. ACS Appl Mater Interfaces 7(24):13620–13626

    Article  CAS  Google Scholar 

  24. Laird ED, Li CY (2013) Structure and morphology control in crystalline polymer−carbon nanotube nanocomposites. Macromolecules 46:2877–2891

    Article  CAS  Google Scholar 

  25. Flieger A-K, Schulz M, Thurn-Albrecht T (2018) Interface-Induced crystallization of polycaprolactone on graphite via first-order prewetting of the crystalline phase. Macromolecules 51(1):189–194

    Article  CAS  Google Scholar 

  26. Han XG, He HZ, Kuang Q, Zhou Xi, Zhang XH, Xu T, Xie ZX, Zhen LS (2009) Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C 113 584–589

  27. Chen J, Yang MS, Zhang SM (2011) Immobilization of antioxidant on nanosilica and the aging resistance behavior in polypropylene. Compos Part A 42 471–477

  28. Wang H, Chen XL, Bai Y, Guo C, Zhang L (2012) Application of dissolved air flotation on separation of waste plastics ABS and PS. Waste Manag 32(7):1297–1305

    Article  CAS  Google Scholar 

  29. Hui W, Chao G, Jiangang F, Zhangxing H, Wei L, Xiaolei C, Caihong Z (2011) Adsorption behavior of weak hydrophilic substances on low-energy surface in aqueous medium. Appl Surf Sci 257 7959–7967

  30. Chen Y, Zhao H, Liu B, Yang H (2015) Charge separation between wurtzite ZnO polar 001 surfaces and their enhanced photocatalytic activity. Appl Catal B 163:189–197

    Article  CAS  Google Scholar 

  31. Monge M, Kahn ML, Maisonnat A, Chaudret B (2003) Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape. Angew Chem Int Ed 42(43):5321–5324

    Article  CAS  Google Scholar 

  32. Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in lsotactic polypropylene (α-phase). J Polym Sci Part B Polym Phys 31 1395–1405

  33. Krache R, Benavente R, Lo´pez-Majada JM, Peren JM, Cerrada MAL, Pe´rez E (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40 6871–6878

  34. Yu Y, Yang S, Yu H, Li J, Guo S (2017) Temperature-dependent alternating α-or β-transcrystalline layers in coextruded isotactic polypropylene multilayered films. Macromolecules 50(13):5098–5106

    Article  CAS  Google Scholar 

  35. Kim SH, Ahna SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2,6-naphthalate). Polymer 44:5625–5634

    Article  CAS  Google Scholar 

  36. Shen Z, Luo F, Lei X, Ji L, Wang K (2016) Enhanced crystallization behaviour and impact toughness of poly (ethylene terephthalate) with a phenyl phosphonic acid salts compound. J Polym Res 23(10):212

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support from Ningxia Key R&D plan, Grant/Award No. 2019BDE03004, the financial support of open project of State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering (2019-KF-17) and First-class discipline construction (Chemical Engineering and Technology) of Ningxia University (No. NXYLXK2017A04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faliang Luo or Chunhui Luo.

Ethics declarations

Conflict of Interest

We are sure that this work is original research and is not submitted to any other journal and there is no conflict of interest both for financial support or relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Luo, F., Mao, J. et al. Effects of crystal planes of ZnO nanocrystal on crystalline, thermal and thermal-oxidation stability of iPP. J Polym Res 28, 172 (2021). https://doi.org/10.1007/s10965-021-02523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02523-z

Keywords

Navigation