Skip to main content
Log in

Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Environmentally responsive hydrogels are widely used in various applications. Facile synthesis of multiply stimuli-responsive hydrogels is necessary. Herein, a triple pH-, thermo- and ion-sensitive hydrogel, shorted as HSP, was synthesized by aqueous radical polymerization using L-serinyl acrylate as a monomer and PEG180DMA as a crosslinker. The compositions and microstructures of HSP are characterized by FT-IR, 1H NMR and SEM. The swelling ratio of HSP is the lowest at pH = 3.0 while increases sharply far away from this pH value. Meanwhile, HSP expands with elevated temperatures or ionic strengths, and reaches a plateau when they above 60 °C or 3.0 mol/L, respectively. In addition, these swelling processes are reversible under alternative changing in extern stimuli, and these cycles can be repeated at least 5 times. Furthermore, the release of sodium salicylate can be easily mediated by pH values, temperatures and ion concentrations, all above indicating that HSP is a promising material for controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv. Colloid Interf. Sci. 168(1–2):247–262

    CAS  Google Scholar 

  2. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399(6738):766–769

    CAS  PubMed  Google Scholar 

  3. Ho DK, Nguyen DT, Thambi T, Lee DS, Huynh DP (2018) Polyamide-based pH and temperature-responsive hydrogels: synthesis and physicochemical characterization. J. Polym. Res. 26(1):7–15

    Google Scholar 

  4. Fundueanu G, Constantin M, Bucatariu S, Ascenzi P (2017) pH/thermo-responsive poly( N -isopropylacrylamide- co -maleic acid) hydrogel with a sensor and an actuator for biomedical applications. Polymer 110:177–186

    CAS  Google Scholar 

  5. Miladinovic ZR, Micic M, Suljovrujic E (2016) Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. J. Polym. Res. 23(4):77–88

    Google Scholar 

  6. Li LX, Lu B, Zhang Y, Xing XD, Wu XY, Liu ZL (2015) Multi-sensitive copolymer hydrogels of N-isopropylacrylamide with several polymerizable azobenzene-containing monomers. J. Polym. Res. 22(9):176–187

    Google Scholar 

  7. da Silva LBJ, Oréfice RL (2014) Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J. Polym. Res. 21(6):466–474

    Google Scholar 

  8. Tang J, Qiao Y, Chu Y, Tong Z, Zhou Y, Zhang W, Xie S, Hu J, Wang T (2019) Magnetic double-network hydrogels for tissue hyperthermia and drug release. J. Mater. Chem. B 7(8):1311–1321

    CAS  Google Scholar 

  9. Kokufata E, Zhang YQ, Tanaka T (1991) Saccharide-sensitive phase transition of a lectin-loaded gel. Nature 351(6324):302–304

    CAS  Google Scholar 

  10. Yang M, Liu BT, Gao G, Liu XL, Liu FQ (2010) Poly(maleic anhydride-co-acrylic acid)/poly(ethylene glycol) hydrogels with pH- and ionic-strength-responses. Chin. J. Polym. Sci. 28(6):951–959

    CAS  Google Scholar 

  11. Stuart MA, Huck WT, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2):101–113

    PubMed  Google Scholar 

  12. Elizabeth GK, Julie NLA, Millicent OS, Thomas HE (2013) Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 42(17):7057–7071

    Google Scholar 

  13. Li X, Su XL (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J. Mater. Chem. B 6(29):4714–4730

    CAS  Google Scholar 

  14. Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS (2008) Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog. Polym. Sci. 33(2):167–179

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64(3):49–60

    Google Scholar 

  16. Tang JD, Qiao YC, Chu YH, Tong ZF, Zhou Y, Zhang WL, Xie SJ, Hu J, Wang TJ (2019) Magnetic double-network hydrogels for tissue hyperthermia and drug release. J. Mater. Chem. B 7(8):1311–1321

    CAS  Google Scholar 

  17. Chen Y, Gao YT, da Silva LP, Pirraco RP, Ma MD, Yang LM, Reis RL, Chen J (2018) A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polym. Chem. 9(29):4063–4072

    CAS  Google Scholar 

  18. Sun Y, Du XQ, He JL, Hu J, Zhang MZ, Ni PH (2017) Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. J. Mater. Chem. B 5(20):3771–3782

    CAS  Google Scholar 

  19. Nutan B, Chandel AKS, Bhalani DV, Jewrajka SK (2017) Synthesis and tailoring the degradation of multi-responsive amphiphilic conetwork gels and hydrogels of poly(beta-amino ester) and poly(amido amine). Polymer 111:265–274

    CAS  Google Scholar 

  20. Luo CH (2016) Studies on driving-force of thermo-sensitive behavior for poly(N-methacryloyl-L-β-isopropylasparagine). Acta Polym. Sin. 7:925–930

    Google Scholar 

  21. Luo CH, Liu Y, Li ZB (2010) Thermo- and pH-responsive polymer derived from Methacrylamide and aspartic acid. Macromolecules 43(19):8101–8108

    CAS  Google Scholar 

  22. Maji T, Banerjee S, Biswas Y, Mandal TK (2015) Dual-stimuli-responsive l-serine-based Zwitterionic UCST-type polymer with tunable Thermosensitivity. Macromolecules 48(14):4957–4966

    CAS  Google Scholar 

  23. Luo CH, Fu WX, Li ZB, Zhao B (2016) Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified L-alanine. Polymer 101:319–327

    CAS  Google Scholar 

  24. Luo CH, Zhao B, Li Z (2012) Dual stimuli-responsive polymers derived from α-amino acids: effects of molecular structure, molecular weight and end-group. Polymer 53(8):1725–1732

    CAS  Google Scholar 

  25. Mori H, Kato I, Saito S, Endo T (2010) Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 43(3):1289–1298

    CAS  Google Scholar 

  26. Song ZF, Wang K, Gao CQ, Wang S, Zhang WQ (2016) A new thermo-, pH-, and CO2-responsive Homopolymer of poly N-2-(diethylamino)ethyl acrylamide: is the Diethylamino group underestimated? Macromolecules 49(1):162–171

    CAS  Google Scholar 

  27. Zhou M, Liu K, Qian X (2016) A facile preparation of pH-temperature dual stimuli-responsive supramolecular hydrogel and its controllable drug release. J. Appl. Polym. Sci. 133(15):43279–43285

    Google Scholar 

  28. Ros R, Munoz-Bertomeu J, Krueger S (2014) Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci. 19(9):564–569

    CAS  PubMed  Google Scholar 

  29. Kalhan SC, Hanson RW (2012) Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 287(24):19786–19791

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19(14):1287–1294

    CAS  PubMed  Google Scholar 

  31. Pan TT, He WD, Li LY, Jiang WX, He C, Tao J (2011) Dual thermo- and pH-sensitive network-grafted hydrogels formed by macrocrosslinker as drug delivery system. J. Polym. Sci. Part A: Polym. Chem. 49(10):2155–2164

    CAS  Google Scholar 

  32. Park YI, Lee KH (2001) Preparation of water-swollen hydrogel membranes for gas separation. J. Appl. Polym. Sci. 80(10):1785–1791

    CAS  Google Scholar 

  33. Hoffman AS (2012) Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23

    Google Scholar 

  34. Luo YL, Zhang KP, Wei QB, Liu ZQ, Chen YS (2009) Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Acta Biomater. 5(1):316–327

    CAS  PubMed  Google Scholar 

  35. Turan E, Çaykara T (2007) Swelling and network parameters of pH-sensitive poly(acrylamide-co-acrylic acid) hydrogels. J. Appl. Polym. Sci. 106(3):2000–2007

    CAS  Google Scholar 

  36. Touitou E, Donbrow M (1982) Drug release from non-disintegrating hydrophilic matrices: sodium salicylate as a model drug. Int. J. Pharm. 11(4):335–364

    Google Scholar 

  37. Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter KV, Sherman NE, Amirault J, Wang Y, Riegel L, He X, Rui TS, Valic M, Vemula PK, Miranda OR, Levy O, Gravallese EM, Aliprantis AO, Ermann J, Karp JM (2018) Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9(1):1275–1285

    PubMed  PubMed Central  Google Scholar 

  38. Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX (2007) Synthesis and characterization of well-defined, amphiphilic poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-poly(ε-caprolactone)]n graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci Part A: Polym Chem 45(22):5354–5364

    CAS  Google Scholar 

  39. Siepmann J, Peppas NA (2012) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 64:163–174

    Google Scholar 

  40. Lee PI (1985) Kinetics of drug release from hydrogel matrices. J. Controlled Release 2:277–288

    CAS  Google Scholar 

  41. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Controlled Release 5(1):37–42

    CAS  Google Scholar 

  42. Ritger PL, Peppas NA (1987) Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controlled Release 5(1):23–36

    CAS  Google Scholar 

  43. Sarkyt EK, Sigitov VB (1999) Swelling, shrinking, deformation, and oscillation of Polyampholyte gels based on vinyl 2-Aminoethyl ether and sodium acrylate. Langmuir 15(12):4230–4235

    Google Scholar 

  44. Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25(17):3725–3732

    CAS  PubMed  Google Scholar 

  45. Sun Y, Li ZB, Wang ZH (2012) Self-assembled monolayer and multilayer films based on L-lysine functionalized perylene bisimide. J. Mater. Chem. 22:4312–4318

    CAS  Google Scholar 

  46. Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24(10):2912–2919

    CAS  Google Scholar 

  47. Kyriazis A, Aubry T, Burchard W, Tsitsilianis C (2009) Colloidal gel from amphiphilic heteroarm polyelectrolyte stars in aqueous media. Polymer 50(14):3204–3210

    CAS  Google Scholar 

  48. Mori H, Iwaya H, Nagai A, Endo T (2005) Controlled synthesis of thermoresponsive polymers derived from L-proline via RAFT polymerization. Chem. Commun. (38):4872-4874

  49. Fu WX, Luo CH, Morin EA, He W, Li ZB, Zhao B (2017) UCST-type Thermosensitive hairy Nanogels synthesized by RAFT polymerization-induced self-assembly. ACS Macro Lett. 6(2):127–133

    CAS  Google Scholar 

  50. Wang XM, Bian G, Zhang M, Chang LM, Li ZW, Li X, An H, Qin JL, Chang RX, Wang HJ (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym. Chem. 8(18):2872–2880

    CAS  Google Scholar 

  51. Wang XM, Chang LM, Hu J, Lang XJ, Fu XH, An H, Wang Y, Wang HJ, Qin JL (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208

    CAS  Google Scholar 

  52. Du HL, Liu MR, Yang XY, Zhai GX (2015) The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today 20(8):1004–1011

    CAS  PubMed  Google Scholar 

  53. Wei W, Li JJ, Qi XL, Zhong Y, Zuo GC, Pan XH, Su T, Zhang JF, Dong W (2017) Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery. Carbohydr. Polym. 177:275–283

    CAS  PubMed  Google Scholar 

  54. Huh HW, Zhao L, Kim SY (2015) Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr. Polym. 126:130–140

    CAS  PubMed  Google Scholar 

  55. Hu YF, Darcos V, Monge S, Li SM, Zhou Y, Su F (2014) Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. Int. J. Pharm. 476(1):31–40

    CAS  PubMed  Google Scholar 

  56. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R 93:1–49

    Google Scholar 

  57. Georgiev GS, Kamenska EB, Vassileva ED, Kamenova IP, Georgieva VT, Iliev SB, Ivanov IA (2006) Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules 7(4):1329–1334

    CAS  PubMed  Google Scholar 

  58. Shih YJ, Chang Y (2010) Tunable blood compatibility of Polysulfobetaine from controllable molecular-weight dependence of Zwitterionic nonfouling nature in aqueous solution. Langmuir 26(22):17286–17294

    CAS  PubMed  Google Scholar 

  59. Xiao XC, Chu LY, Chen WM, Zhu JH (2005) Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46(9):3199–3209

    CAS  Google Scholar 

  60. Xu B, Zhang YY, Liu WG (2015) Hydrogen-bonding toughened hydrogels and emerging CO2-responsive shape memory effect. Macromol. Rapid Commun. 36(17):1585–1591

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from Key research projects of North Minzu University(2019KJ14), the National Natural Science Foundation of China (21464001), Specialized Research Fund for Outstanding Young Teachers in Ningxia Higher Education Institutions (NGY2018-165), Natural Science Foundation of Ningxia Province (NZ 17099), Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project, and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K24). The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Hui Luo or Fa Liang Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C.H., Sun, X.X., Wang, F. et al. Utilization of L-serinyl derivate to preparing triple stimuli-responsive hydrogels for controlled drug delivery. J Polym Res 26, 280 (2019). https://doi.org/10.1007/s10965-019-1976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1976-1

Keywords

Navigation