Skip to main content
Log in

A gelatin/PLA-b-PEG film of excellent gas barrier and mechanical properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A polylactic acid-polyethylene glycol block copolymer (PLA-b-PEG) was used as an additive to prepare gelatin/PLA-b-PEG blend films for the first time. The PEG molecule block enhanced the compatibility of the PLA molecule block with gelatin, which greatly improved the excellent mechanical and gas barrier properties of the gelatin film. The film contained 5 wt% PLA-b-PEG possessed the highest tensile strength and the highest elastic modulus. When the PLA-b-PEG content further increased to 20 wt%, the tensile strength, elastic modulus and elongation at the break of the blend film were all higher than pure gelatin film, suggesting that the gelatin/PLA-b-PEG blend film was pliable and tough. The blend film possessed not only excellent oxygen barrier property, but also a much-improved water barrier property. The degradation rate of the blend film was elongated controllably by regulating the content of the PLA-b-PEG copolymer. The blend film showed great potential in the application of food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hanani ZAN, Roos YH, Kerry JP (2014) Use and application of gelatin as potential biodegradable packaging materials for food products. Int J Biol Macromol 71:94–102

    Article  Google Scholar 

  2. Ji L, Qiao W, Zhang Y, Wu H, Miao S, Cheng Z, Gong QM, Liang J, Zhu AP (2017) A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Mater Sci Eng C 78:362–369

    Article  CAS  Google Scholar 

  3. Ji L, Qiao W, Huang K, Zhang Y, Wu H, Miao S, Liu HF, Dong YX, Zhu AP, Qiu D (2017) Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Mater Sci Eng C 75:590–595

    Article  CAS  Google Scholar 

  4. Martucci JF, Ruseckaite RA (2010) Three-layer sheets based on gelatin and poly (lactic acid), part 1: preparation and properties. J Appl Polym Sci 118:3102–3110

    Article  CAS  Google Scholar 

  5. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274

    Article  CAS  Google Scholar 

  6. Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem 136:1490–1495

    Article  Google Scholar 

  7. Yu Y, Lu Q, Yuan S, Zhang R, Wu Z (2017) Properties of Thermoresponsive N-maleyl gelatin-co-P (N-isopropylacrylamide) hydrogel with ultrahigh mechanical strength and self-recovery. J Polym Res 24:190

    Article  Google Scholar 

  8. Tongnuanchan P, Benjakul S, Prodpran T, Nilsuwan K (2015) Emulsion film based on fish skin gelatin and palm oil: physical, structural and thermal properties. Food Hydrocoll 48:248–259

    Article  CAS  Google Scholar 

  9. Wang WH, Wang K, Xia JD, Liu YW, Zhao Y, Liu AJ (2017) Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 94(a):258–265

    Article  CAS  Google Scholar 

  10. Arfat YA, Ahmed J, Hiremath N, Auras R, Joseph A (2017) Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll 62:191–202

    Article  CAS  Google Scholar 

  11. Hosseini SF, Javidi Z, Rezaei M (2016) Efficient gas barrier properties of multi-layer films based on poly (lactic acid) and fish gelatin. Int J Biol Macromol 92:1205–1214

    Article  CAS  Google Scholar 

  12. Xu CJ, Lv QL, Wu DF, Wang ZF (2017) Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose 24(5):2163–2175

    Article  CAS  Google Scholar 

  13. Vijayendra SVN, Shamala TR (2014) Film forming microbial biopolymers for commercial applications-a review. Crit Rev Biotechnol 34(4):338–357

    Article  CAS  Google Scholar 

  14. Scarfato P, Di Maio L, Incarnato L (2015) Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J Appl Polym Sci 132(48):42597

    Article  Google Scholar 

  15. Martucci JF, Ruseckaite RA (2015) Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polym Degrad Stab 116:36–44

    Article  CAS  Google Scholar 

  16. Lee KY, Song KB (2017) Preparation and characterization of an olive flounder (paralichthys olivaceus) skin gelatin and polylactic acid bilayer film. J Food Sci 82(3):706–710

    Article  CAS  Google Scholar 

  17. Soradech S, Limatvapirat S, Luangtana-anan M (2013) Stability enhancement of shellac by formation of composite film: effect of gelatin and plasticizers. J Food Eng 116:572–580

    Article  CAS  Google Scholar 

  18. Cao N, Yang XM, Fu YH (2009) Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll 23:729–735

    Article  CAS  Google Scholar 

  19. Zhou N, Liu C, Lv S, Sun D, Qiao Q, Zhang R, Liu Y, Xiao J, Sun GW (2016) Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel. J Biomed Mater Res Part A 104A:3149–3156

    Article  Google Scholar 

  20. Sharma A, Bhat S, Nayak V, Kumar A (2015) Efficacy of supermacroporous poly (ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Mater Sci Eng C 47:298–312

    Article  CAS  Google Scholar 

  21. Cao Y, Lee BH, Peled HB, Venkatraman SS (2016) Synthesis of stiffness-tunable and cell-responsive gelatin-poly (ethylene glycol) hydrogel for three-dimensional cell encapsulation. J Biomed Mater Res Part A 104A:2401–2411

    Article  Google Scholar 

  22. Angelopoulou A, Voulgari E, Diamanti EK, Gournis D, Avgoustakis K (2015) Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Eur J Pharm Biopharm 93:18–26

    Article  CAS  Google Scholar 

  23. Cui HT, Shao J, Wang Y, Zhang PB, Chen XS, Wei Y (2013) PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. Biomacromolecule 14:1904–1912

    Article  CAS  Google Scholar 

  24. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341–353

    Article  CAS  Google Scholar 

  25. Shiku Y, Hamaguchi PY, Benjakul S, Visessanguan W, Tanaka M (2004) Effect of surimi quality on properties of edible films based on Alaska Pollack. Food Chem 86:493–499

    Article  CAS  Google Scholar 

  26. Rhim JW, Gennadios A, Weller CL, Hanna MA (2002) Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Ind Crop Prod 15:199–205

    Article  CAS  Google Scholar 

  27. Krittika N, Ki MK, Gi HR (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98:377–384

    Article  Google Scholar 

  28. Zhang C, Ma Y, Guo K, Zhao XY (2012) High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films. J Agric Food Chem 60:2219–2223

    Article  CAS  Google Scholar 

  29. Xue JJ, Niu YZ, Gong M, Shi R, Chen DF, Zhang LQ, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9:1600–1612

    Article  CAS  Google Scholar 

  30. Wang DK, Varanasi S, Fredericks PM, Hill DJ, Symons AL, Whittaker AK, Rasoul F (2013) FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci part A-Polym Chem 51:5153–5176

    Article  Google Scholar 

  31. Lee JM, Kim SH, Jeong HY, Ahn NR, Roh HG, Cho JW, Chun BC, Oh ST, Park JS (2014) Preparation and characterization of polyurethane foam using a PLA/PEG polyol mixture. Fiber Polym 15:1349–1356

    Article  CAS  Google Scholar 

  32. Acosta S, Jimenez A, Chafer M, Gonzalez-Martínez C, Chiralt A (2015) Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll 49:135–143

    Article  CAS  Google Scholar 

  33. Acosta S, Chiralt A, Santamarina P, Rosello J, Gonzàlez-Martínez C, Cháfer M (2016) Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocoll 61:233–240

    Article  CAS  Google Scholar 

  34. Al-Hassan AA, Norziah MH (2012) Starch-gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll 26:108–117

    Article  CAS  Google Scholar 

  35. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273

    Article  CAS  Google Scholar 

  36. Yakimet I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J (2005) Mechanical properties with respect to water content of gelatin films in glassy state. Polymer 46:12577–12585

    Article  Google Scholar 

  37. Kozlov PV, Burdygina GI (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24:651–666

    Article  CAS  Google Scholar 

  38. Vackier MC, Hills BP, Rutledge DN (1999) An NMR relaxation study of the state of water in gelatin gels. J Magn Reson 138:36–42

    Article  CAS  Google Scholar 

  39. Yanina SM, Pablo RS, Adriana NM (2017) Smart edible films based on gelatin and curcumin. Food Hydrocoll 66:8–15

    Article  Google Scholar 

  40. Ghalia MA, Dahman Y (2017) Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int J Biol Macromol 95:494–504

    Article  Google Scholar 

  41. Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N (2016) Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol 93:9–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51273171), the Natural Science Foundation of Jiangsu Province (No. BK20131226), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, L., Gong, M., Qiao, W. et al. A gelatin/PLA-b-PEG film of excellent gas barrier and mechanical properties. J Polym Res 25, 210 (2018). https://doi.org/10.1007/s10965-018-1600-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1600-9

Keywords

Navigation