Skip to main content
Log in

Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new hybrid of Laponite and graphene oxide (LGO), prepared in aqueous media by ultrasonication followed by solvent evaporation was used to reinforce epoxy matrix. The hybrid system was dispersed in liquid epoxy using a two-step solvent-assisted process. The suspensions showed negligible enhancements in processing barrier as revealed by rheology. A combinatorial analysis of small-angle x-ray scattering (SAXS) and microscopy suggested uniform dispersion of nanofillers in the matrix. The fillers showed fractal dimensions in polymer matrix as inferred from SAXS studies. Below 0.5 wt% LGO, the structure showed surface fractal and above 0.5 wt% the composites showed mass fractal, indicating a transformation from well-dispersed to agglomerated composites as the filler content increases. The composites exhibited substantial improvements in various mechanical properties. Notably, the flexural strength and modulus increased by ~23% and ~29%, respectively, with only 0.5 wt% LGO and the fracture toughness showed an increment of ~23% with 0.3 wt% LGO in epoxy matrix. A bimodal distribution of glass transition temperature (T g ) with improved T g was obtained for the composites. The simultaneous strengthening and toughening effects of nanofillers are explained by means of fractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011). Carbon 49:793–803

    Article  CAS  Google Scholar 

  2. Pradhan B, Roy S, Srivastava SK, Saxena A (2015). J Appl Polym Sci 132:41818 (1-11)

  3. Yang G, Liao Z, Yang Z, Tang Z, Guo B (2015). J Appl Polym Sci 132: 41832 (1-9)

  4. Zhang H, Wang C, Zhang Y (2015). J Appl Polym Sci 132:41309 (1-7)

  5. Mathur R, Chatterjee S, Singh B (2008). Compos Sci Technol 68:1608–1615

    Article  CAS  Google Scholar 

  6. Ismail H, Ramly A, Othman N (2013). J Appl Polym Sci 128:2433–2438

    Article  CAS  Google Scholar 

  7. Alhwaige AA, Herbert MM, Alhassan SM, Ishida H, Qutubuddin S, Schiraldi DA (2016). Polymer 91:180–186

    Article  CAS  Google Scholar 

  8. Wichmann MH, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K (2006). Eng Fract Mech 73:2346–2359

    Article  Google Scholar 

  9. Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, Van Vuure A, Gorbatikh L, Moldenaers P, Verpoest I (2009). Carbon 47:2914–2923

    Article  CAS  Google Scholar 

  10. Anand A, Harshe R, Joshi M (2013). J Compos Mater 47:2937–2943

    Article  CAS  Google Scholar 

  11. Anand A, Harshe R, Joshi M (2013). J Appl Polym Sci 129:1618–1624

    Article  CAS  Google Scholar 

  12. Luo F, Chen L, Ning N, Wang K, Chen F, Fu Q (2012). J Appl Polym Sci 125:E348–E357

    Article  CAS  Google Scholar 

  13. Lubineau G, Rahaman A (2012). Carbon 50:2377–2395

    Article  CAS  Google Scholar 

  14. Thostenson E, Li W, Wang D, Ren Z, Chou T (2002). J Appl Phys 91:6034–6037

    Article  CAS  Google Scholar 

  15. Molnar K, Koakova E, Meszaros L (2014). Express Polym Lett 8:62–72

  16. Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011). Polym Adv Technol 22:339–349

    Article  CAS  Google Scholar 

  17. Ramsay JDF (1986). J Coll Interf Sci 109:441–447

    Article  CAS  Google Scholar 

  18. Arias CB, Zaman AA, Talton J (2007). J Disp Sci Techn 28:247–254

    Article  CAS  Google Scholar 

  19. Patro TU, Wagner HD (2011). Nanotech 22:455706 (1-12)

  20. Harikrishnan G, Singh SN, Lindsay CI, Macosko CW (2012). Green Chem 14:766–770

    Article  CAS  Google Scholar 

  21. Joshi YM (2007). J Chem Phys 127:081102–081108

    Article  Google Scholar 

  22. Alhassan SM, Qutubuddin S, Schiraldi DA (2012). Langmuir 28:4009–4015

    Article  CAS  Google Scholar 

  23. Hummers JWS, Offeman RE (1958). J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  24. Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009). J Mater Chem 19:8856–8860

    Article  CAS  Google Scholar 

  25. Bortz DR, Heras EG, Martin GI (2012). Macromolecules 45:238–245

    Article  CAS  Google Scholar 

  26. Chouhan DK, Patro TU, Harikrishnan G, Kumar S, Gupta S, Kumar GS, Cohen H, Wagner HD (2016). Appl Clay Sci 132:105–113

    Article  Google Scholar 

  27. Patro TU, Wagner HD (2016). J Polym Sci B Polym Phys 54:2377–2387

    Article  CAS  Google Scholar 

  28. Harikrishnan G, Singh SN, Kiesel E, Macosko CW (2010). Polymer 51:3349–3353

    Article  CAS  Google Scholar 

  29. Martin JE, Hurd AJ (1987). J Appl Crystallogr 20:61–78

    Article  CAS  Google Scholar 

  30. Hurd AJ, Schaefer DW, Smith DM, Ross SB, Le MA, Spooner S (1989). Phys Rev B 39:9742–9745

    Article  CAS  Google Scholar 

  31. Karlsson C, Best AS, Swenson J, Kohlbrecher J, Borjesson L (2005). Macromolecules 38:6666–6671

    Article  CAS  Google Scholar 

  32. Fatnassi M, Solterbeck C-H, Es-Souni M (2014). RSC Adv 4:46976–46979

    Article  CAS  Google Scholar 

  33. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012). Compos Sci Technol 72:1459–1476

    Article  CAS  Google Scholar 

  34. Gómez-Navarro C, Burghard M, Kern K (2008). Nano Lett 8:2045–2049

    Article  Google Scholar 

  35. Chen B, Evans JRG (2006). Scr Mater 54:1581–1585

    Article  CAS  Google Scholar 

  36. Chouhan DK, Rath SK, Kumar A, Alegaonkar P, Kumar S, Harikrishnan G, Patro TU (2015). J Mater Sci 50:7458–7472

    Article  CAS  Google Scholar 

  37. Abdurrahmanoglu S, Can V, Okay O (2008). J Appl Polym Sci 109:3714–3724

    Article  CAS  Google Scholar 

  38. Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011). Polymer 52:1603–1611

    Article  CAS  Google Scholar 

  39. Putz WK, Palmeri JM, Cohn BR, Andrews R, Brinson CL (2008). Macromolecules 41:6752–6756

    Article  CAS  Google Scholar 

  40. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009). Adv Funct Mater 19:2297–2302

    Article  CAS  Google Scholar 

  41. Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010). J Mater Chem 20:9635–9643

    Article  CAS  Google Scholar 

  42. Rath SK, Sudarshan K, Bhavsar RS, Kharul UK, Pujari PK, Patri M, Khakhar DV (2016). Phys Chem Chem Phys 18:1487–1499

    Article  CAS  Google Scholar 

  43. Rath SK, Aswal VK, Sharma C, Joshi K, Patri M, Harikrishnan G, Khakhar DV (2014). Polymer 55:5198–5210

    Article  CAS  Google Scholar 

  44. Velmurugan R, Mohan T (2004). J Mater Sci 39:7333–7339

    Article  CAS  Google Scholar 

  45. Kourkoutsaki T, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P (2009). J Appl Polym Sci 113:2569–2582

    Article  CAS  Google Scholar 

  46. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007). Eur Polym J 43:3113–3127

    Article  CAS  Google Scholar 

  47. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009). ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TUP would like to thankfully acknowledge lab facilities and financial support from DIAT (DIAT/F/MATE/4845/TUP) and the funding from DST under Fast Track Project for Young Scientist (SB/FT/CS-043/2012). We would like to thank Dr. R. K. Goyal, COEP, Pune for TGA studies. The funding from DRDO–DIAT Program on Nanomaterials by ER-IPR, DRDO is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Umasankar Patro.

Electronic supplementary material

ESM 1

(DOCX 3065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, D.K., Kumar, A., Rath, S.K. et al. Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy. J Polym Res 25, 60 (2018). https://doi.org/10.1007/s10965-018-1461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1461-2

Keywords

Navigation