Skip to main content
Log in

Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thin films of some polymer-ceramic nanomultiferroic composites (in 0–3 connectivity) of compositions (1-x) PVDF-xCoFe2O4 (x = 0.05, 0.1, 0.5) have been fabricated through a solution casting route. Based on X-ray diffraction pattern and data, basic crystal structure and unit cell parameters were obtained. The surface morphology of the materials was studied using a scanning electron microscopy (SEM) technique. Structural investigation confirms the presence of a polymeric electro-active β-phase of matrix (PVDF) and nano filler spinel phase of the incorporated nano-ceramics. The observed SEM micrographs confirm that the nanoparticles are well distributed in the PVDF matrix without any agglomeration with a lesser spherulitic microstructure. The flexible nano-composites fabricated with polymer (PVDF) and CoFe2O4 provide high permittivity (relative dielectric constant) and low loss tangent. An impedance spectroscopy (IS) technique was employed to study the effect of grain and grain boundary in the resistive properties of the composite materials in terms of electric circuit. The study of AC conductivity as a function of frequency follows Jonscher’s power law. The improved conductivity and dielectric, magnetic, and measured first-order magnetoelectric coefficients suggest some promising applications in the embedded capacitors as well as in multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eerensten W, Mathur ND, Scoot JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759

    Article  Google Scholar 

  2. Martins P, Lanceros-Mendez S (2013) Polymer-Based Magnetoelectric Materials. Adv Funct Mater 23:3371–3385

    Article  CAS  Google Scholar 

  3. Nan CW, Li M, Huang JH (2001) Calculation of Giant Magnetoelectric Effects in Ferroic composites of Rare-Earth-Iron Alloys and Ferroelectric Polymers. Phys Rev B 63:144414

    Article  Google Scholar 

  4. Ma J, Hu J, Li Z, Nan C-W (2011) Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films. Adv Mater 23:1062

    Article  CAS  Google Scholar 

  5. Martins P, Larrea A, Golcalves R, Botelho G, Ramana EV, Mendiratta SK, Sebastian V, Lanceros-Mendez S (2015) Novel Anisotropic Magnetoelectric Effect on -FeO(OH)/P(VDF-Trfe) multiferroic Composites. ACS Appl Mater Interfaces 7:11224–11229

    Article  CAS  Google Scholar 

  6. Martins P, Lopes AC, Lanceros- Mendez S (2014) Electroactive Phase of Poly(Vinylidene Fluoride): Determination, Processing and Application. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  7. Martins P, Gonçalves R, Lanceros-Mendez S, Lasheras A, Gutiérrez J, Barandiarán JM (2014) Effect of Filler Dispersion and Dispersion Method on the Piezoelectric and Magnetoelectric Response of CoFe2O4/P(VDF-Trfe) nano-composites. Appl Surf Sci 313:215–219

    Article  CAS  Google Scholar 

  8. Jin J, Lu SG, Chanthad C, Zhang Q, Haque MA, Wang Q (2011) Multiferroic Polymer Composites with Greatly Enhanced Magnetoelectric Effect under a Low Magnetic Bias. Adv Mater 23:3853–3858

    CAS  Google Scholar 

  9. Silva M, Reis S, Lehmann CS, Martins P, Lanceros-Mendez S, Lasheras A, Gutiérrez J, Barandiarán JM (2013) Optimization of the Magnetoelectric Response of Poly (Vinylidene Fluoride)/Epoxy/Vitrovac Laminates. ACS Appl Mater Interfaces 5:10912–10919

    Article  CAS  Google Scholar 

  10. Zak AK, Gan WC, Majid WHA, Majid D, Velayutham TS (2011) Experimental and Theoretical Dielectric Studies of PVDF/PZT nano-composite Thin Films. Ceram Int 37:1653

    Article  CAS  Google Scholar 

  11. Yiping G, Yun L, Jianli W, Withers RL, Hua C, Lu J, Paul S (2010) Giant Magnetodielectric Effect in 0–3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) nano-composite Films. J Phys Chem C 114:13861

    Google Scholar 

  12. Gonçalves R, Martins P, Moya X, Ghidinid M, Sencadas V, Botelho G, Mathur ND, Lanceros-Mendez S (2015) Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale 7(17):8058–8061

    Article  Google Scholar 

  13. Goncalves R, Martins P, Correia DM, Sencadasa V, Vilas JL, Leon LM, Botelho G, Lanceros-Mendez S (2015) Development of magnetoelectric CoFe2O4 poly(vinylidene fluoride) microsphere. RSC Adv 5(45):35852–35857

    Article  CAS  Google Scholar 

  14. Martins P, Kolen’ko YV, Rivas J, Lanceros-Mendez S (2015) Tailored magnetic and magnetoelectric response of polymer-based composites. ACS Appl Mater Interfaces 7(27):15017–15022

    Article  CAS  Google Scholar 

  15. Martin P, Costa CM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) On the origin of the electroactive poly(vinylidene fluoride) -phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14(8):2807–2811

    Article  Google Scholar 

  16. Zhang JX, Dai JY, So LC, Sun CL, Lo CY, Or SW, Chan HLW (2009) The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nano-composites. J Appl Phys 105:054102

    Article  Google Scholar 

  17. Behera C, Choudhary RNP, Das PR (2015) Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite. J Mater Sci Mater Electron 26(4):2343–2356

    Article  CAS  Google Scholar 

  18. Martins P, Costa CM, Mendez SL (2011) Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nano-composites. Appl Phys A 103:233

    Article  CAS  Google Scholar 

  19. Song Y, Shen Y, Lin HY, Lin YH, Li M, Nan CW (2012) Improving the dielectric constants and breakdown strength of polymercomposites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491

    Article  CAS  Google Scholar 

  20. Xia W, Xu Z, Fei W, Zhang Z (2012) Electrical energy density and dielectric properties of poly(vinylidene fluoride -chlorotrifluoroethylene) / BaSrTiO3 nano-composites. Ceram Int 38:1071

    Article  CAS  Google Scholar 

  21. Yuan JK, Ya SH, Dang ZM, Sylvestre A, Genestoux M, Bai JB (2011) Giant Dielectric Permittivity nano-composites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction. J Phys Cchem C 115:5515

    Article  CAS  Google Scholar 

  22. Wu C, Huang X, Wu X, Xie L, Yang K, Jiang P (2013) Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nano-composites with enhanced energy storage density. Nanoscale 5:3847

    Article  CAS  Google Scholar 

  23. Sharma AK, Sharma GD (2014) Dielectric properties of 0–3 PZT/PVDf/Graphite composite. Int J Sci Eng Res 5:245

    Google Scholar 

  24. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nano-composites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040

    Article  CAS  Google Scholar 

  25. Macdonald JR (1984) Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13:147

    Article  CAS  Google Scholar 

  26. West AR, Sinclair DC, Hirose N (1997) Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1:65

    Article  CAS  Google Scholar 

  27. Behera C, Choudhary RNP, Das PR (2017) Development of multiferroic polymer nanocomposite from PVDF and (Bi0.5Ba0.25 Sr0.25)(Fe0.5Ti0.5)O3. J Mater Sci Mater Electron 28:2586

  28. Karthik C, Verma KBR (2006) Dielectric and AC conductivity behavior of BaBi2Nb2O9 ceramics. J Phys Chem Solids 67:2437

    Article  CAS  Google Scholar 

  29. Pelaiz-Barranco A, Gonzalez Abreu Y, Lopez-Noda R (2008) Dielectric relaxation and conductivity behavior in modified lead titnate ferroelectric ceramics. J Phys Condens Mater 2:505208

    Article  Google Scholar 

  30. Rajendran S, Uma T (2000) Lithium ion conduction in PVC-LiBF4 electrolytes gelled with PMMA. J Power Sources 88:282

    Article  CAS  Google Scholar 

  31. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  32. Natesan B, Karan NK, Katiyar RS (2006) Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte. Phys Rev E 74:042801

    Article  CAS  Google Scholar 

  33. Hirankumar G, Selvasekarapandian S, Bhuvaneswari MS, Baskaran R, Vijayakumar M (2006) Ag+ ion transport studies in a polyvinyl alcohol-based polymer electrolyte system. J Solid State Electrochem 10:193

    Article  CAS  Google Scholar 

  34. Martin P, Lasheras A, Gutierrez JJ, Barandiaran JM, Orue I, Lanceros-Mendez S (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nano-composites. J Phys D Appl Phys 44:495303

    Article  Google Scholar 

  35. Jyoti R, Yadav KL, Satya P (2015) Structural and magnetodielctric properties of Poly (vinylidene-flyoride)-[0.8(Bi0.5Na0.5)TiO-0.2CoFe2O4] Polymer Composite Films. Composite Part B 79:138

    Google Scholar 

  36. Kusuma DY, Nguyen CA, Lee PS (2010) Enhanced Ferroelectric Switching Characteristics of P(VDF-TrFE) for Organic Memory Devices. J Phys Chem B 114:13289

    Article  CAS  Google Scholar 

  37. Li J (2009) Sang Il Seok, Baojin Chu, Fatih Dogan, Qiming Zhang, Qing Wang, nano-composite of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Adv Mater 21:217

    Article  Google Scholar 

  38. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic Magnetoelectric Composites:Historitical Perspectives, Status, and Future directions. J Appl Phys 103:031101

    Article  Google Scholar 

  39. Chu B, Lin M, Neese B, Zhou X, Qin C, Zhang QM (2007) Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nano-composites. Appl Phys Lett 91:122909

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DRDO, the Government of India, for financial assistance (Grant number: ERIP/ER/1102202/M/01/1438 dated 25/07/2012) to carry out this work. The authors are also grateful to the Central Research Facility of IIT Kharagpur for providing some experimental facility (SEM and SQUID) and to Dr. Ashok Kumar, Sr. Scientist, NPL for use of the facility for the PE loop experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Choudhary, R.N.P. & Das, P.R. Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles. J Polym Res 24, 56 (2017). https://doi.org/10.1007/s10965-017-1208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1208-5

Keywords

Navigation