Skip to main content
Log in

Synthesis and characterisation of novel flame retardant polyurethanes containing designed phosphorus units

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, 2-carboxyethyl(phenyl)phosphinic acid (CEPPA) and trimethylolpropane (TMP) are used to synthesise a novel flame retardant containing phosphorus units: 5-hydroxy-3-(2-hydroxyethyl)-3-methylpentyl-3-[2-carboxyethylphenylphosphine]propanoate (HMCPP). Then, 4,4′-diphenylmethane diisocyanate (MDI) is taken as a hard segment, with HMCPP and polycaprolactone diol (PCL) as soft segments, and 1,4-butanediol (BD) is used as a chain extender to prepare a novel polyurethane (HMCPP/PUs). The results of 1H NMR and FT-IR reveal the successful synthesis of the HMCPP flame retardant. The gel permeation chromatography analysis demonstrates that an increase in the HMCPP content is accompanied by a decrease in the molecular weight of PU. The FT-IR analysis reveals the complete NCO group exhaustion of PU and HMCPP/PUs. The thermal analysis shows that the initial decomposition temperature of PU is higher than that of HMCPP/PUs by 19 °C. Both DMA and DSC analyses show that the Tg and the dynamic Tg of PU are higher than those of HMCPP/PU. Stress-strain tests indicate that the HMCPP content is increased, the maximum stress and Young’s modulus of HMCPP/PUs are decreased, and the elongation at break is increased. All of the HMCPP/PUs exhibit excellent flame retardancy, obtaining higher than 27.7 in limiting oxygen indices and a V-0 rating in the UL-94 test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abraham GA, de Queiroz AAA, San Roman JS (2006) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22:1971–1985

    Article  Google Scholar 

  2. Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221

    Article  CAS  Google Scholar 

  3. Mequanint K, Sanderson R (2003) Nano-structure phosphorus-containing polyurethane dispersions: synthesis and crosslinking with melamine formaldehyde resin. Polymer 44:2631–2639

    Article  CAS  Google Scholar 

  4. Gugliuzza A, Clarizia G, Golemme G, Drioli E (2002) New breathable and waterproof coatings for textiles: effect of an aliphatic polyurethane on the formation of PEEK-WC porous membranes. Eur Polym J 38:235–242

    Article  CAS  Google Scholar 

  5. Park HB, Lee YM (2002) Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. J Membr Sci 197:283–296

    Article  CAS  Google Scholar 

  6. Gunatillake P, Mayadunne R, Adhikari R, El-Gewely MR (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  CAS  Google Scholar 

  7. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  8. Mohanty AK, Misra M, Hinrinchsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24.

  9. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  10. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  11. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  12. Pena J, Corrales T, Izquierdo-Barba I, Doadrio AL, Vallet-Regi M (2006) Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polym Degrad Stab 91:1424–1432

  13. Coulembier O, Degee P, Hedrick JL, Dubois P (2006) From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(b-malic acid) derivatives. Prog Polym Sci 31:723–747

    Article  CAS  Google Scholar 

  14. Jiang X, Li JH, Ding MM, Tan H, Ling QY, Zhong YP (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846

    Article  CAS  Google Scholar 

  15. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  16. Sain M, Park SH, Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stab 83:363–367

    Article  CAS  Google Scholar 

  17. Zhu S, Shi W (2003) Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polym Degrad Stab 80:217–222

    Article  CAS  Google Scholar 

  18. Liu YL, Hsiue CH, Lan CW, Kuo JK, Jeng RJ, Chiu YS (1997) Synthesis, thermal properties, and flame retardancy of phosphorus containing polyimides. J Appl Polym Sci 63:875–882

    Article  CAS  Google Scholar 

  19. Yeh JT, Hsieh SH, Cheng YC, Yang MJ, Chen KN (1998) Combustion and smoke emission properties of poly(ethylene terephthalate) filled with phosphorous and metallic oxides. Polym Degrad Stab 61:399–407

    Article  CAS  Google Scholar 

  20. Banks M, Ebdon JR, Johnson M (1994) The flame-retardant effect of diethylvinyl phosphonate in copolymers with styrene, methyl-methacrylate, acrylonitrile and acrylamide. Polymer 35:3470–3474

    Article  CAS  Google Scholar 

  21. Cheng TC, Chiu YS, Chen HB, Ho SY (1995) Degradation of phosphorus-containing polyurethanes. Polym Degrad Stab 47:375–381

    Article  Google Scholar 

  22. Liu YL, Hsiue GH, Lee RH, Chiu YS (1997) Phosphorus-containing epoxy for flame retardant. III: using phosphorylated diamines as curing agents. J Appl Polym Sci 63:895–901

    Article  CAS  Google Scholar 

  23. Zhao H, Wang YZ, Wang DY, Wu B, Chen DQ, Wang XL, Yang KK (2003) Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups. Polym Degrad Stab 80:135–140

    Article  CAS  Google Scholar 

  24. Chen-Yang YW, Yuan CY, Li CH, Yang HC (2003) Preparation and characterization of novel flame retardant (aliphatic -phosphate)cyclotriphosphazene-containing polyurethanes. J Appl Polym Sci 90:1357–1364

    Article  CAS  Google Scholar 

  25. Liu YL, Hsiue GH, Lan CW, Chiu YS (1997) Flame-retardant polyurethanes from phosphorus-containing isocyanates. J Polym Sci A Polym Chem 35:1769–1780

    Article  CAS  Google Scholar 

  26. Chang TC, Chiu YS, Chen HB, Ho SY (1995) Degradation of phosphorus-containing polyurethanes. Polym Degrad Stab 47:375–381

    Article  CAS  Google Scholar 

  27. Chang TC, Shen WY, Chiu YS, Ho SY (1995) Thermo-oxidative degradation of phosphorus-containing polyurethane. Polym Degrad Stab 49:353–360

    Article  CAS  Google Scholar 

  28. Çelebi F, Polat O, Aras L, Güngör G, Akhmedov Idris M (2004) Synthesis and characterization of water-dispersed flame-retardant polyurethane resin using phosphorus-containing chain extender. J Appl Polym Sci 91:1314–1321

    Article  Google Scholar 

  29. Huang WK, Yeh JT, Chen KJ, Chen KK (2001) Flame retardation improvement of aqueous-based polyurethane with aziridinyl phosphazene curing system. J Appl Polym Sci 79:662–673

    Article  CAS  Google Scholar 

  30. Arun Prasath R, Nanjundan S, Pakula T, Klapper M (2004) Thermal and dynamic mechanical behaviour of calcium containing co-polyurethanes. Polym Degrad Stab 85:911–923

  31. Cullis CF, Hirschler MM (1984) Char formation from Polyolefins. Eur Polym J 20:53–60

    Article  CAS  Google Scholar 

  32. Wang DY, Liu Y, Wang YZ, Artiles CP, Hull TR, Price D (2007) Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polym Degrad Stabil 92:1592–1598

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maw-Cherng Suen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, SH., Wu, CL., Lee, HT. et al. Synthesis and characterisation of novel flame retardant polyurethanes containing designed phosphorus units. J Polym Res 23, 205 (2016). https://doi.org/10.1007/s10965-016-1098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1098-y

Keywords

Navigation