Skip to main content
Log in

Influence of temperature on the confinement effects of micro and nano level graphite filled poly(isoprene-co-isobutylene) composites

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrically conducting elastomer composites using nanocarbon fillers have utmost significance in the current scenario of flexible electronics. Though a large number of reports have come out in this topic, the influence of temperature on the nano reinforcement is little addressed. Here we aim at deducing the confinement effects occurring in the micro and nano composites of poly(isobutylene-co-isoprene) rubber (IIR) under different temperatures. For this various composite samples of IIR were prepared with expanded graphite (micro-sized) and reduced graphene oxide (nano-sized) fillers and the structure and morphology were characterized by Raman spectroscopy, X-ray diffraction studies and scanning electron microscopy. We could observe greater influence of temperature on the properties of rubber nanocomposites compared to the micro and anticipate the applicability of such materials in temperature sensors. With 25–45 °C rise in temperature, the current increases and the sample shows deviations from the non-linear behavior. However at 45 °C, non-linear property is seen as the conducting particles gap increases with temperature. The temperature variation influences the modulus (stiffness) of the polymeric material as well. Finally a correlation is drawn between their electrical and dielectric characteristics and the molecular level interactions from Payne effect at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tien YI, Wei KH (1999) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42(7):3213–3221

    Article  Google Scholar 

  2. Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41(4):1345–1353

    Article  CAS  Google Scholar 

  3. Tien YI, Wei KH (2001) High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders. Macromolecules 34(26):9045–9052

    Article  CAS  Google Scholar 

  4. Ma J, Xiang P, Mai YW, et al. (2004) A novel approach to high performance elastomer by using clay. Macromol Rapid Commun 25:1692–1696

    Article  CAS  Google Scholar 

  5. Galimberti M, Senatore S, Conzatti L, et al. (2010) Formation of clay intercalates with organic bilayers in hydrocarbon polymers. Polym Adv Technol 20:135–142

    Article  Google Scholar 

  6. Liang YR, Ma J, Lu YL, et al. (2005) Effects of heat and pressure on intercalation structures of isobutylene-isoprene rubber/clay nanocomposites. I. Prepared by melt blending. J Polym Sci Polym Phys 43:2653–2664

    Article  CAS  Google Scholar 

  7. Sadasivuni KK, Ponnamma D, Kasak P, et al. (2014) Designing dual phase sensing materials from polyaniline filled styrene-isopreneestyrene composites. Mater Chem Phys 147:1029–1036

    Article  CAS  Google Scholar 

  8. Sadasivuni KK, Saiter A, Gautier N, et al. (2013) Effect of molecular interactions on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites, colloid Polym. Sci 291:1729–1740

    CAS  Google Scholar 

  9. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Electrochemical deposition and characterization of polyaniline-graphene nanocomposite films and its corrosion protection properties. J Polym Res 23:91

    Article  Google Scholar 

  10. Ponnamma D, Sung SH, Hong JS, et al. (2014) Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites. Eur Polym J 53:147–159

    Article  CAS  Google Scholar 

  11. Sadasivuni KK, Ponnamma D, Thomas S, et al. (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  12. Ikeda Y, Katoh A, Shimanuki J, et al. (2004) Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy. Macromol Rapid Commun 25:1186–1190

    Article  CAS  Google Scholar 

  13. Coleman JN, Khan U, Blau WJ, et al. (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  14. Robertson CG, Roland CM, et al. (2008) Glass transition and interfacial segmental dynamics in polymer-particle composites, rubber Chem. Technol. 81:506–522

    CAS  Google Scholar 

  15. Ponnamma D, Sadasivuni KK, Cabibihan JJ, Yoon WJ, Kumar B (2016) Reduced graphene oxide filled poly(dimethyl siloxane) based transparent stretchable, and touch-responsive sensors. Appl Phys Lett 108:171906

    Article  Google Scholar 

  16. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  17. Sj P, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  18. Rafiee MA, Rafiee J, Wang Z, et al. (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  19. Ponnamma D, Sadasivuni KK, Grohens Y, Thomas S (2014) Carbon nanotubes based elastomer composites-an approach towards multifunctional materials. J Mater Chem C 2:8446–8485

    Article  CAS  Google Scholar 

  20. Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  21. Wang MJ (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled Vulcanizates, rubber Chem. Technol 71:520–589

    CAS  Google Scholar 

  22. Qu L, Huang G, Wu J, et al. (2007) Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J Mater Sci 42:7256–7262

    Article  CAS  Google Scholar 

  23. Manjhi S, Sarkhel G, et al. (2011) Effect of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of kaolin reinforced EPDM rubber. J Appl Polym Sci 119:2268–2274

    Article  CAS  Google Scholar 

  24. Brochu P, Pei Q, et al. (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36

    Article  CAS  Google Scholar 

  25. Li R, Xiong C, Kuang D, et al. (2008) Polyamide 11/poly(vinylidene fluoride) blends as novel flexible materials for capacitors. Macromol Rapid Commun 29:1449–1454

    Article  CAS  Google Scholar 

  26. Das NC, Khastgir D, Chaki TK, et al. (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos Pt A-Appl Sci Manuf 31:1069–1081

    Article  Google Scholar 

  27. Ponnamma D, Visakh PM, Aji P, et al. (2013) Advances in elastomers: their composites and nanocomposites: state of art, new challenges and opportunities. Mater Sci Forum 12:1–9

    Google Scholar 

  28. Sadasivuni KK, Ponnamma D, Ko HU, Kim HC, Zhai L, Kim J (2016) Flexible NO2 sensors from renewable cellulose nanocrystals/ironoxide composites. Sens Act B 233:633–638

    Article  CAS  Google Scholar 

  29. Daniela CM, Dmitry VK, Jacob MB, et al. (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  Google Scholar 

  30. George JJ, Bhowmick AK (2008) Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties. Mater Sci 43:702–708

    Article  CAS  Google Scholar 

  31. Voggu R, Das B, Rout CS, et al. (2008) Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J Phys Condens Matter 20:472204

    Article  Google Scholar 

  32. Maier PG, Goritz D (1996) Molecular interpretation of the Payne effect. Kaut Gummi Kunstst 49:18–21

    CAS  Google Scholar 

  33. Yoon CO, Reghu M, Moses D, et al. (1994) Transport near the metal-insulator transition: Polypyrrole doped with PF 6. Phys Rev B 49:10851–10863

    Article  CAS  Google Scholar 

  34. Kaiser AB, Rogers SA, Park YW (2004) Charge transport in conducting polymers: Polyacetylene Nanofibres. Mol Cryst Liq Cryst 415:115–124

    Article  CAS  Google Scholar 

  35. Ouyang W, Sun J, Memon M, et al. (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509

    Article  CAS  Google Scholar 

  36. Yuan J, Yao S, Dong Z, et al. (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115:5515–5521

    Article  CAS  Google Scholar 

  37. Zhou W, Dong L, Sui X, Wang Z, Zuo J, Cai H, Chen Q (2016) High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles. J Polym Res 23:45

    Article  Google Scholar 

  38. Ponnamma D, Sadasivuni KK, Strankowski M, et al. (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3:16068–16079

    Article  CAS  Google Scholar 

  39. Rahman A, Sanyal MK (2007) Observation of charge density wave characteristics in conducting polymer nanowires: possibility of Wigner crystallization. Phys Rev B 76:045110

    Article  Google Scholar 

  40. Papon A, Lequeux HMF, Oberdisse J, et al. (2012) Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 8:4090–4096

    Article  CAS  Google Scholar 

  41. Sadasivuni KK, Castro M, Saiter A, et al. (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  Google Scholar 

  42. Sadasivuni KK, Ponnamma D, Kumar B, et al. (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Comp Sci Technol 104:18–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible by NPRP grant 6-282-2-119 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnamma, D., Saiter, A., Saiter, J.M. et al. Influence of temperature on the confinement effects of micro and nano level graphite filled poly(isoprene-co-isobutylene) composites. J Polym Res 23, 125 (2016). https://doi.org/10.1007/s10965-016-1013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1013-6

Keywords

Navigation