Skip to main content

Advertisement

Log in

Enhanced properties of poly(vinylidene fluoride) with low filler content SiO2-g-(MMA-co-BA) core-shell nanoparticles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

γ-methacryloxypropyl trimethoxysilane (γ-MPS) modified nano-silica particles (85 nm) were prepared and used to copolymerize with methyl methacrylate (MMA) and butylacrylate (BA) monomers by miniemulsion polymerization method. The obtained SiO2-g-(MMA-co-BA) nanoparticles with different core/shell ratios were used to improve the properties of poly (vinylidene fluoride) (PVDF). SEM result showed SiO2-g-(MMA-co-BA) nanoparticles dispersed in PVDF matrix uniformly due to the good miscibility between PVDF and MMA-co-BA shell. The prepared SiO2-g-(MMA-co-BA) particles behaved a novel toughening ability and even 1 wt% modifier could induce the ductile fracture of PVDF and the PVDF blends showed an excellent toughness and stiffness balance. The toughening mechanism results indicated that debonding between the PVDF and SiO2-g-(MMA-co-BA) particles promoted shear yielding of PVDF matrix. The novel toughening behavior of PVDF was also related with the crystal transformation. During the notched Izod impact test, the α→β phase transformation took place, which should play an important role in toughening of PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ke Z, Shi D, Yin JH, Li RKY, Mai YW (2008) Facile method of preparing supertough polyamide6 with low rubber content. Macromolecules 41:7264–7267

    Article  CAS  Google Scholar 

  2. Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032

    Article  CAS  Google Scholar 

  3. Fu Y, Song HH, Zhou C, Zhang HX, Sun SL (2013) Modification of the grafting character to prepare PA6/ABS-g-MA blends with higher toughness and stiffness. Polymer Bull 70:1853–1862

    Article  CAS  Google Scholar 

  4. Liu HZ, Song WJ, Chen F, Guo L, Zhang J (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44:1513–1522

    Article  CAS  Google Scholar 

  5. Huang JJ, Paul DR (2006) Comparison of fracture behavior of nylon 6 versus an amorphous polyamide toughened with maleated poly (ethylene-1-octene) elastomers. Polymer 47:3505–3519

    Article  CAS  Google Scholar 

  6. Shi D, Liu E, Tan T, Shi HC, Jiang T, Yang YK, Luan SF, Yin JH, Mai YW, Li RKY (2013) Core/shell rubber toughened polyamide 6: an effective way to get good balance between toughness and yield strength. RSC Adv 3:21563–21569

    Article  CAS  Google Scholar 

  7. Guo Y, Sun SL, Zhang HX (2014) Modification of the core–shell ratio to prepare PB-g-(MMA-co-St-co-GMA) particle-toughened poly (butylene terephthalate) and polycarbonate blends with balanced stiffness and toughness. RSC Adv 4:58880

    Article  CAS  Google Scholar 

  8. Liang YR, Wen SP, Ren YY, Liu L (2015) Fabrication of nanoprotrusion surface structured silica nanofibers for the improvement of the toughening of polypropylene. RSC Adv 5:31547

    Article  CAS  Google Scholar 

  9. Wilbrink MWL, Argon AS, Cohen RE, Weinberg M (2001) Toughenability of Nylon-6 with CaCO3 filler particles: new findings and general principles. Polymer 42:10155–10180

    Article  CAS  Google Scholar 

  10. Zheng JZ, Zhou XP, Xie XL, Mai YW (2010) Silica hybrid particles with nanometre polymer shells and their influence on the toughening of polypropylene. Nanoscale 2:2269–2274

    Article  CAS  Google Scholar 

  11. Jayalakshmy MS, Philip J (2015) Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control. J Polym Res 22:42

    Article  Google Scholar 

  12. Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res 20:43

    Article  Google Scholar 

  13. Chiu FC, Chen CC, Chen YJ (2014) Binary and ternary nanocomposites based on PVDF, PMMA, and PVDF/PMMA blends: polymorphism, thermal, and rheological properties. J Polym Res 21:378

    Article  Google Scholar 

  14. Xing CY, Zhao MM, Zhao LP, You JC, Cao XJ, Li YJ (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 4:5726–5734

    Article  CAS  Google Scholar 

  15. Thakre A, Borkar H, Singh BP, Kumar A (2015) A facile and simple phase-inversion method for the fabrication of Ag nanoparticles/multi-walled carbon nanotubes/poly(vinylidene fluoride) nanocomposite with high-efficiency of electrocatalytic property. RSC Adv 5:57406–57413

    Article  CAS  Google Scholar 

  16. Merlini C, Barra GMO, Araujo TM, Pegoretti A (2014) Electrically pressure sensitive poly (vinylidene fluoride)/polypyrrole electrospun mats. RSC Adv 4:15749–15758

    Article  CAS  Google Scholar 

  17. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173

    Article  CAS  Google Scholar 

  18. Li YJ, Iwakura Y, Zhao L, Shimizu H (2008) Nanostructured poly (vinylidene fluoride) materials by melt blending with several percent of acrylic rubber. Macromolecules 41:3120–3124

    Article  CAS  Google Scholar 

  19. Bourgeat-Lami E, Herrea NN, Putaux JL, Perro A, Ravaine S, Mingotaud C, Duguet E (2005) Surface assisted nucleation and growth of polymer latexes on organically-modified inorganic particles. Macromol Symp 229:32–46

    Article  CAS  Google Scholar 

  20. Schoth A, Wagner C, Hecht LL, Winzen S, Schuchmann HP, Landfester K (2014) Surfactant-free polyurethane nanocapsules via inverse pickering miniemulsion. Colloid Polym Sci 292:2427–2437

    Article  CAS  Google Scholar 

  21. Bourgeat-Lami E, Farzi GA, David L, Putaux JL, McKenna TFL (2012) Silica encapsulation by miniemulsion polymerization: distribution and localization of the silica particles in droplets and latex particles. Langmuir 28:6021–6031

    Article  CAS  Google Scholar 

  22. Kawaguchi T, Pearson RA (2003) The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer 44:4239–4247

    Article  CAS  Google Scholar 

  23. Song HH, Yang SJ, Sun SL, Zhang HX (2013) Effect of miscibility and crystallization on the mechanical properties and transparency of PVDF/PMMA blends. Polym-Plast Technol 52:221–227

    Article  CAS  Google Scholar 

  24. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  CAS  Google Scholar 

  25. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China and Jilin Provincial Science & Technology Department under Grants 51273025, 51273026 and 20140101104JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Sun, S. & Zhang, H. Enhanced properties of poly(vinylidene fluoride) with low filler content SiO2-g-(MMA-co-BA) core-shell nanoparticles. J Polym Res 23, 119 (2016). https://doi.org/10.1007/s10965-016-1012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1012-7

Keywords

Navigation