Skip to main content
Log in

Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ammonia gas-sensing properties of the iodine-doped polythiophene film deposited by electrophoretic deposition technique on an epoxy glass substrate with concentric circular electrodes were developed. The gas-sensing properties were investigated for different concentrations of ammonia gas from 0.046 to 0.185 vol% at room temperature. The obtained results demonstrate that the prepared film has a high sensitivity and excellent repeatability as well as a great potential for ammonia gas-sensing application at room temperature. Furthermore, ammonia gas-sensing mechanism of the resistance-based sensor is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Timmer B, Olthuis W, Van Den Berg A (2005) Ammonia sensors and their applications - a review. Sens Actuat B-Chem 107:666–677

    Article  CAS  Google Scholar 

  2. Wang Q, Dong X, Pang Z, Du Y, Xia X, Wei Q, Hung F (2012) Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers. Sensors 12:17046–17057

    Article  CAS  Google Scholar 

  3. Shao F, Ramirez FH, Prades JD, Morante JR, Lopez N (2012) Assessment and modeling of NH3-SnO2 interactions using individual nanowires. Procedia Eng 47:293–297

    Article  CAS  Google Scholar 

  4. Shimizu Y, Okamoto T, Takao Y, Egashira M (2000) Desorption behavior of ammonia from TiO2 -based specimens - ammonia sensing mechanism of double-layer sensors with TiO2 -based catalyst layers. J Mol Catal A-Chem 155:183–191

    Article  CAS  Google Scholar 

  5. Karunagaran B, Uthirakumar P, Chung SJ, Velumani S, Suh EK (2007) TiO2 thin film gas sensor for monitoring ammonia. Mater Charact 58:680–684

    Article  CAS  Google Scholar 

  6. Hayakawa I, Iwamoto Y, Kikuta K, Hirano S (2000) Gas sensing properties of metal-organics derived Pt dispersed-TiO2 thin film fired in NH3. Sensor Actuat B-Chem 67:270–274

    Article  CAS  Google Scholar 

  7. Chang SJ, Weng WY, Hsu CL, Hsueh TJ (2010) High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles. Nano Commun Netw 1:283–288

    Article  Google Scholar 

  8. Devi GS, Subrahmanyam VB, Gadkari SC, Gupta SK (2006) NH3 gas sensing properties of nanocrystalline ZnO based thick films. Anal Chim Acta 568:41–46

    Article  CAS  Google Scholar 

  9. Wagh MS, Jain GH, Patil DR, Patil SA, Patil LA (2006) Modified zinc oxide thick film resistors as NH3 gas sensor. Sens Actuat B-Chem 115:128–133

    Article  CAS  Google Scholar 

  10. Dao DV, Shibuya K, Bui TT, Sugiyama S (2011) Micromachined NH3 Gas Sensor with ppb-level Sensitivity Based on WO3 Nanoparticles Thinfilm. Procedia Eng 25:1149–1152

    Article  CAS  Google Scholar 

  11. Wang X, Miura N, Yamazoe N (2000) Study of WO3 -based sensing materials for NH3 and NO detection. Sens Actuat B-Chem 66:74–76

    Article  CAS  Google Scholar 

  12. Srivastava V, Jain K (2008) Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films. Sens Actuat B-Chem 133:46–52

    Article  CAS  Google Scholar 

  13. Stankova M, Vilanova X, Calderer J, Llobet E, Brezmes J, Gr’acia I, Can’e C, Correig X (2006) Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sens Actuat B-Chem 113:241–248

    Article  CAS  Google Scholar 

  14. Wang X, Zhang M, Liu J, Luo T, Qian Y (2009) Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sens Actuat B-Chem 137:103–110

    Article  Google Scholar 

  15. Kong F, Wang Y, Zhang J, Xia H, Zhu B, Wang Y, Wang S, Wu S (2008) The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mat Sci Eng B 150:6–11

    Article  CAS  Google Scholar 

  16. Tuan CV, Tuan MA, Hieu NV, Trung T (2012) Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH3 gas sensor application. Curr Appl Phys 12:1011–1016

    Article  Google Scholar 

  17. Patois T, Sanchez JB, Berger F, Rauch JY, Fievet P, Lakard B (2012) Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters. Sensor Actuat B-Chem 171–172: 431–439

  18. Talwar V, Singh O, Singh RC (2014) ZnO assisted polyaniline nanofibers and its application as ammoniagas sensor. Sens Actuat B-Chem 191:276–282

    Article  CAS  Google Scholar 

  19. Hibbard T, Crowley K, Killard AJ (2013) Direct measurement of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Anal Chim Acta 779:56–63

    Article  CAS  Google Scholar 

  20. Kebiche H, Debarnota D, Merzouki A, Epaillard FP, Haddaoui N (2012) Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods. Anal Chim Acta 737:64–71

    Article  CAS  Google Scholar 

  21. Foroutani K, Pourabbas B, Sharif M, Fallahian M, Khademi S, Mohammadizadeh M (2014) In situ deposition of polythiophene nanoparticles on flexible transparent films: effect of the process conditions. Mat Sci Semicond Proc 19:57–65

    Article  CAS  Google Scholar 

  22. Xian-zhi G, Yan-fei K, Tai-li Y, Shu-rong W (2012) Low-temperature NO2 sensors based on Polythiophene /WO3 organic–inorganic hybrids. Trans Nonferrous Met Soc China 22:380–385

    Article  Google Scholar 

  23. Karim MR, Lim KT, Lee CJ, Lee MS (2007) A facile synthesis of polythiophene nanowires. Synth Met 157:1008–1012

    Article  CAS  Google Scholar 

  24. Kamat SV, Yadav JB, Puri V, Puri RK (2012) Modification of the properties of polythiophene thin films by vapor chopping. Appl Surf Sci 258:7567–7573

    Article  CAS  Google Scholar 

  25. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307

    Article  CAS  Google Scholar 

  26. Patil BH, Jagadale AD, Lokhande CD (2012) Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth Met 162:1400–1405

    Article  CAS  Google Scholar 

  27. Ma X, Li G, Xu H, Wang M, Chen H (2006) Preparation of polythiophene composite film by in situ polymerization at room temperature and its gas response studies. Thin Solid Films 515:2700–2704

    Article  CAS  Google Scholar 

  28. Kamat SV, Puri V, Puri RK (2012) Room temperature synthesis and characterization of polythiophene thin films by chemical bath deposition (CBD) method. Mater Chem Phys 132:228–232

    Article  CAS  Google Scholar 

  29. Kamat SV, Tamboli SH, Puri V, Puri RK, Yadav JB, Joo OS (2010) Post deposition heating effects on the properties of polythiophene thin films. Arch Phys Res 1:119–125

    CAS  Google Scholar 

  30. Bazzaoui EA, Marsault JP, Aeiyach S, Lacaze PC (1994) Resonance Raman study of polythiophene films in the doped and undoped states. Relations between spectral data and physicochemical properties. Synth Met 66:217–224

    Article  CAS  Google Scholar 

  31. Ammam M (2012) Electrophoretic deposition under modulated electric fields: a review. RSC Adv 2:7633–7646

    Article  CAS  Google Scholar 

  32. Mistry BD (2009) A Handbook of Spectroscopic Data CHEMISTRY (UV, JR, PMR, CNMR and Mass Spectroscopy). Oxford Book Company, Jaipur, India

  33. Nalwa HS (1997) Handbook of organic conductive molecules and polymers. Wiley, Baffins Lane

    Google Scholar 

  34. Khatamian M, Fazayeli M, Divband B (2014) Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Mat Sci Semicon Proc 26:540–547

    Article  CAS  Google Scholar 

  35. Xu M, Zhang J, Wang S, Guo X, Xia H, Wang Y, Zhang S, Huang W, Wu S (2010) Gas sensing properties of SnO2 hollow spheres/ polythiophene inorganic–organic hybrids. Sens Actuat B-Chem 146:8–13

    Article  CAS  Google Scholar 

  36. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and raman characteristic frequencies of organic molecules. Academic Press

  37. Navale ST, Mane AT, Khuspe GD, Chougule MA, Patil VB (2014) Room temperature NO2 sensing properties of polythiophene films. Synth Met 195:228–233

    Article  CAS  Google Scholar 

  38. Gok A, Omastov’a M, Yavuz AG (2007) Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth Met 157:23–29

    Article  Google Scholar 

  39. Gnanakan SRP, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanoparticles by surfactant - assisted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4:1289–1301

    CAS  Google Scholar 

  40. Furukawa Y (2007) Vibrational spectroscopy of conducting polymers: fundamentals and applications. In: Chalmers JM, Griffiths PR (Eds.) Handbook of Vibrational Spectroscopy, Volume 1: Theory and Instrumentation. Wiley

  41. Li B, Santhanam S, Schultz L, Jeffries-EL M, Iovu MC, Sauv’e G, Cooper J, Zhang R, Revelli JC, Kusne AG, Snyder JL, Kowalewski T, Weiss LE, McCullough RD, Fedder GK, Lambeth DN (2007) Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sens Actuat B-Chem 123:651–660

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Milani Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkeshi, H., Milani Moghaddam, H. Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J Polym Res 23, 108 (2016). https://doi.org/10.1007/s10965-016-0999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0999-0

Keywords

Navigation