Skip to main content
Log in

Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The isotactic polypropylene – modified silica (iPP/SiO2) hybrid nanocomposites, obtained by grafting polypropylene chains on amine-functionalized silica particles during reactive blending, were studied. It was found that use of amine-functionalized silica and PP-g-MA as a compatibilizer improved dispersion of nanoparticles. Nanosilica, especially surface-modified, revealed some nucleation activity towards iPP, manifesting in an increase of the crystallization temperature and reduction of spherulite size. iPP/silica nanocomposites exhibit highly improved thermo-oxidative stability, due to formation of a silica protective layer, limiting the polymer volatilization rate. Nanocomposites demonstrate enhanced stiffness and strength, but at higher silica content the ductility is nearly lost due to presence of big agglomerates, acting as critical-sized structural flaws. At low silica concentrations dispersion was improved and big agglomerates were not observed. Consequently, iPP/PP-g-MA/am-SiO2 nanocomposites with low silica content demonstrate high ductility and enhanced impact resistance, related to reinforcing effect of well dispersed silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  2. Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959

    Article  CAS  Google Scholar 

  3. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  4. Zhang MQ, Rong MZ, Ruan WH (2009) Nanoparticles/polymer composites: fabrication and mechanical properties. In: Karger-Kocsis J, Fakirov S (eds) Nano- and micro-mechanics of polymer blends and composites. Hanser, Munich, pp. 93–140

    Google Scholar 

  5. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

  6. Sun LY, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409

    Article  CAS  Google Scholar 

  7. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984

    Article  CAS  Google Scholar 

  8. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87(1):183–189

    Article  CAS  Google Scholar 

  9. Michler GH, Balta-Calleja FJ (2012) Nano- and micromechanics of polymers. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  10. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  11. Kim HC, Dubois G (2005) Dekker encyclopedia of nanoscience and nanotechnology. Taylor & Francis, New York

    Google Scholar 

  12. Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905

    Article  CAS  Google Scholar 

  13. Nalwa HS (ed) (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  14. Pegoretti A (2009) Creep and fatigue behaviour of polymer nanocomposites. In: Karger-Kocsis J, Fakirov S (eds) Nano- and micro-mechanics of polymer blends and composites. Hanser, Munich, pp. 301–339

    Chapter  Google Scholar 

  15. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos Sci Technol 62(10–11):1327–1340

    Article  CAS  Google Scholar 

  16. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41(9):1965–1978

    Article  CAS  Google Scholar 

  17. Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) Preparation bv melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci 100(4):2684–2696

    Article  CAS  Google Scholar 

  18. Bouaziz A, Jaziri M, Dalmas F, Massardier V (2014) Nanocomposites of silica reinforced polypropylene: correlation between morphology and properties. Polym Eng Sci 54(9):2187–2196

    Article  CAS  Google Scholar 

  19. Chen JH, Rong MZ, Ruan WH, Zhang MQ (2009) Interfacial enhancement of nano-SiO2/polypropylene composites. Compos Sci Technol 69(2):252–259

    Article  CAS  Google Scholar 

  20. Lin OH, Mohd Ishak ZA, Akil HM (2009) Preparation and properties of nanosilica-filled polypropylene composites with PP-methyl POSS as compatibiliser. Mater Des 30(3):748–751

    Article  CAS  Google Scholar 

  21. Rong MZ, Zhang MQ, Pan SL, Friedrich K (2004) Interfacial effects in polypropylene-silica nanocomposites. J Appl Polym Sci 92(3):1771–1781

    Article  CAS  Google Scholar 

  22. Studziński M, Jeziórska R, Szadkowska A, Zielecka M (2014) Modified nanosilica-filled polypropylene composites with glycidyl methacrylate grafted ethylene/n-octene copolymer as compatibilizer. Polimery 59:625–635

    Article  Google Scholar 

  23. Garcia M, van Vliet G, Jain S, Schrauwen BAG, Sarkissov A, van Zyl WE, Boukamp B (2004) Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci 6(2):169–175

    CAS  Google Scholar 

  24. Papageorgiou DG, Vourlias G, Bikiaris DN, Chrissafis K (2014) Effect of silica nanoparticles modification on the thermal, structural, and decomposition properties of a β-nucleated poly(propylene-co-ethylene) matrix. Macromol Chem Phys 215(9):839–850

    Article  CAS  Google Scholar 

  25. Pavlidou E, Bikiaris D, Vassiliou A, Chiotelli M, Karayannidis G (2005) Mechanical properties and morphological examination of isotactic polypropylene/SiO2 nanocomposites containing PP-g-MA as compatibilizer. J Phys Conf Ser 10(1):190–193

    Article  CAS  Google Scholar 

  26. Zhou RJ, Burkhart T (2011) Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J Mater Sci 46(5):1228–1238

    Article  CAS  Google Scholar 

  27. Zoukrami F, Haddaoui N, Vanzeveren C, Sclavons M, Devaux J (2008) Effect of compatibilizer on the dispersion of untreated silica in a polypropylene matrix. Polym Int 57(5):756–763

    Article  CAS  Google Scholar 

  28. Taniike T, Toyonaga M, Terano M (2014) Polypropylene - grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer 55(4):1012–1019

    Article  CAS  Google Scholar 

  29. Karian HG (ed) (2003) Handbook of polypropylene and polypropylene composites. Plastics Engineering. Marcel Dekker, New York

    Google Scholar 

  30. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42(1):167–183

    Article  CAS  Google Scholar 

  31. Boyer C, Boutevin B, Robin JJ (2005) Study of the synthesis of graft copolymers by a reactive process. Influence of the copolymer structure on the adhesion of polypropylene onto poly(vinylidene fluoride). Polym Degrad Stab 90(2):326–339

    Article  CAS  Google Scholar 

  32. Fina A, Tabuani D, Peijs T, Camino G (2009) POSS grafting on PPgMA by one-step reactive blending. Polymer 50(1):218–226

    Article  CAS  Google Scholar 

  33. Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20(42):9297–9305

    Article  CAS  Google Scholar 

  34. Grala M, Bartczak Z, Pracella M (2013) Morphology and mechanical properties of polypropylene-POSS hybrid nanocomposites obtained by reactive blending. Polym Compos 34(6):929–941

    Article  CAS  Google Scholar 

  35. Krigbaum WR, Uematsu I (1965) Heat and entropy of fusion of isotactic polypropylene. J Polym Sci A Polym Chem 3(2):767–776

    CAS  Google Scholar 

  36. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128

    Article  CAS  Google Scholar 

  37. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Macromol Chem 75:134–158

    Article  CAS  Google Scholar 

  38. Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley-Interscience, New York

    Google Scholar 

  39. Kurth DG, Bein T (1992) Quantification of the reactivity of 3-aminopropyl-triethoxysilane monolayers with the quartz-crystal microbalance. Angew Chem Int Ed Engl 31(3):336–338

    Article  Google Scholar 

  40. Kurth DG, Bein T (1993) Surface reactions on thin layers of silane coupling agents. Langmuir 9(11):2965–2973

    Article  CAS  Google Scholar 

  41. Ek S, Iiskola EI, Niinistö L (2004) Atomic layer deposition of amino-functionalized silica surfaces using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silylating agent. J Phys Chem B 108(28):9650–9655

    Article  CAS  Google Scholar 

  42. Sen T, Bruce IJ (2012) Surface engineering of nanoparticles in suspension for particle based bio-sensing. Sci Report 2:564

    Article  Google Scholar 

  43. van de Waterbeemd M, Sen T, Biagini S, Bruce IJ (2010) Surface functionalisation of magnetic nanoparticles: quantification of surface to bulk amine density. Micro Nano Lett 5(5):282

    Article  Google Scholar 

  44. Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21(15):7029–7035

    Article  CAS  Google Scholar 

  45. Choi S-H, Cai Y, Newby B-MZ (2007) Stability Enhancement Of Polystyrene Thin Films On Aminopropyltriethoxysilane Ultrathin Layer Modified Surfaces. In: Silanes and Other Coupling Agents, Volume 4.

  46. Wåhlander M, Nilsson F, Larsson E, Tsai W-C, Hillborg H, Carlmark A, Gedde UW, Malmström E (2014) Polymer-grafted Al2O3-nanoparticles for controlled dispersion in poly(ethylene-co-butyl acrylate) nanocomposites. Polymer 55(9):2125–2138

    Article  Google Scholar 

  47. van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interface Sci 156(1):1–18

    Article  Google Scholar 

  48. Pedrazzoli D, Pegoretti A, Kalaitzidou K (2015) Understanding the effect of silica nanoparticles and exfoliated graphite nanoplatelets on the crystallization behavior of isotactic polypropylene. Polym Eng Sci 55(3):672–680

    Article  CAS  Google Scholar 

  49. Grassie N, Scott G (1985) Polymer degradation and stabilization. Cambridge University Press, Cambridge

    Google Scholar 

  50. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440(1):36–42

    Article  CAS  Google Scholar 

  51. Pawlak A, Galeski A, Rozanski A (2014) Cavitation during deformation of semicrystalline polymers. Prog Polym Sci 39(5):921–958

    Article  CAS  Google Scholar 

  52. Dorigato A, Dzenis Y, Pegoretti A (2013) Filler aggregation as a reinforcement mechanism in polymer nanocomposites. Mech Mater 61:79–90

    Article  Google Scholar 

  53. Ahmed S, Jones FR (1990) A review of particluate reinforcement theories for polymer composites. J Mater Sci 25:4933–4942

    Article  CAS  Google Scholar 

  54. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. M. Dekker, New York

    Google Scholar 

  55. Nicolais L, Nicodemo L (1973) Strength of particulate composite. Polym Eng Sci 13:469–477

    Article  CAS  Google Scholar 

  56. Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28(12):1643–1699

    Article  CAS  Google Scholar 

  57. Brooks NWJ, Mukhtar M (2000) Temperature and stem length dependence of the yield stress of polyethylene. Polymer 41:1475–1480

    Article  CAS  Google Scholar 

  58. Dorigato A, D’Amato M, Pegoretti A (2012) Thermo-mechanical properties of high density polyethylene – fumed silica nanocomposites: effect of filler surface area and treatment. J Polym Res 19(6)

  59. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47(4):1267–1280

    Article  CAS  Google Scholar 

  60. Boyd RH (1985) Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer 26(3):323–347

    Article  CAS  Google Scholar 

  61. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation — a review. Polymer 26(8):1123–1133

    Article  CAS  Google Scholar 

  62. Bartczak Z, Galeski A (2014) Mechanical properties of polymer blends. In: Utracki LA, Wilkie CA (eds) Polymer blends handbook, vol 2, 2nd edn. Springer Science+Business Media, Dordrecht, pp. 1203–1297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Bartczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grala, M., Bartczak, Z. & Różański, A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J Polym Res 23, 25 (2016). https://doi.org/10.1007/s10965-015-0914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0914-0

Keywords

Navigation